期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels 被引量:1
1
作者 Edgar López-Martínez octavio vázquez-gómez +1 位作者 Héctor Javier vergara-Hernández Bernardo Campillo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第12期1304-1312,共9页
Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures comprising bainite-martensite and ferrite-martensite/austenite microconstituents was studied du... Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures comprising bainite-martensite and ferrite-martensite/austenite microconstituents was studied during continuous heating by dilatometric analysis. Austenite formation occurred in two steps: (1) carbide dissolution and precipitation and (2) transformation of residual ferrite to austenite. Dilatometric analysis was used to determine the critical temperatures of austenite formation and continuous heating transformation diagrams for heating rates ranging from 0.03°C.s^-1 to 0.67°C.s^-1. The austenite volume fraction was fitted using the Johnson-Mehl-Avrami-Kolmogorov equation to determine the kinetic parameters k and n as functions of the heating rate. Both n and k parameters increased with increasing heat- ing rate, which suggests an increase in the nucleation and growth rates of austenite. The activation energy of austenite formation was determined by the Kissinger method. Two activation energies were associated with each of the two austenite formation steps. In the first step, the austenite growth rate was controlled by carbon diffusion from carbide dissolution and precipitation; in the second step, it was controlled by the dissolution of residual ferrite to austenite. 展开更多
关键词 non-isothermal kinetics microalloyed steel AUSTENITE HEATING dilatometry
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部