Laboratory experiments were conducted to measure the compressional wave velocities under hydrostatic pressure in Shirahama Tako sandstones with a porosity of 12% and 24%,respectively.In dry samples,the pressure depend...Laboratory experiments were conducted to measure the compressional wave velocities under hydrostatic pressure in Shirahama Tako sandstones with a porosity of 12% and 24%,respectively.In dry samples,the pressure dependence of velocity is ascribed to the difference in pore structures.Velocities were also measured to map the movement of the injected CO2 within water-saturated samples during CO2 injection.In the water-saturated samples,velocity changes caused by the CO2 injection are typically on the order of 10%.A series of seismic tomography experiments are conducted on porous sandstone samples to demonstrate the use of cross-well seismic profiling for monitoring the migration of CO2 in geological sequestration projects.展开更多
The long-term safety assessment of CO2 aquifer storage requires a deep understanding o permeability evolution during inelastic deformations in sedimentary rocks.The permeability change has been measured in the entire ...The long-term safety assessment of CO2 aquifer storage requires a deep understanding o permeability evolution during inelastic deformations in sedimentary rocks.The permeability change has been measured in the entire process from elastic,plastic,post-failure to axial stress unloading for Shirahama sandstone subjected to triaxial compressions under various confining pressures.The measurements revealed that the confining pressure plays an important role in controlling inelastic deformation behavior and the tendency of the permeability evolution.In the brittle faulting regime under a low confining pressure,significant increase in permeability accompanied by dilatancy can be observed.In brittle-ductile transition regime and ductile regime,faulting or inelastic deformation does not necessarily and significantly enhance the permeability,and the permeability during deformation is lower than their corresponding initial values.Microscopic observations revealed that the two mechanisms:(1)shear-enhanced cracking,and (2)grain crushing,are responsible for these inelastic deformation and permeability evolution tendency.The presented results suggested that storing CO2 in those sites where ductile deformation prevails may be more safe.展开更多
文摘Laboratory experiments were conducted to measure the compressional wave velocities under hydrostatic pressure in Shirahama Tako sandstones with a porosity of 12% and 24%,respectively.In dry samples,the pressure dependence of velocity is ascribed to the difference in pore structures.Velocities were also measured to map the movement of the injected CO2 within water-saturated samples during CO2 injection.In the water-saturated samples,velocity changes caused by the CO2 injection are typically on the order of 10%.A series of seismic tomography experiments are conducted on porous sandstone samples to demonstrate the use of cross-well seismic profiling for monitoring the migration of CO2 in geological sequestration projects.
文摘The long-term safety assessment of CO2 aquifer storage requires a deep understanding o permeability evolution during inelastic deformations in sedimentary rocks.The permeability change has been measured in the entire process from elastic,plastic,post-failure to axial stress unloading for Shirahama sandstone subjected to triaxial compressions under various confining pressures.The measurements revealed that the confining pressure plays an important role in controlling inelastic deformation behavior and the tendency of the permeability evolution.In the brittle faulting regime under a low confining pressure,significant increase in permeability accompanied by dilatancy can be observed.In brittle-ductile transition regime and ductile regime,faulting or inelastic deformation does not necessarily and significantly enhance the permeability,and the permeability during deformation is lower than their corresponding initial values.Microscopic observations revealed that the two mechanisms:(1)shear-enhanced cracking,and (2)grain crushing,are responsible for these inelastic deformation and permeability evolution tendency.The presented results suggested that storing CO2 in those sites where ductile deformation prevails may be more safe.