Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead ceils must be quickly removed to avoid the further toxic effects they exert in the pa- renchyma, a ...Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead ceils must be quickly removed to avoid the further toxic effects they exert in the pa- renchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct obser- vation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic ceils, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neuro- logical disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.展开更多
基金supported by grants from the Spanish Ministry of Economy and Competitiveness with FEDER funds to AS(BFU2015-66689,RYC-2013-12817)OA is recipient of a predoctoral fellowship from the Basque GovernmentIDA is recipient of a predoctoral fellowship from the University of the Basque Country EHU/UPV
文摘Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead ceils must be quickly removed to avoid the further toxic effects they exert in the pa- renchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct obser- vation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic ceils, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neuro- logical disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.