This research has investigated the tensile properties and fractography of animal fibre-reinforced low density polyethylene composites. The composites were synthesized by hot compression moulding using chemically modif...This research has investigated the tensile properties and fractography of animal fibre-reinforced low density polyethylene composites. The composites were synthesized by hot compression moulding using chemically modified white and black cow hair biofibres as the reinforcing phase of composites. Alkaline solutions of varying molarities were used to prepare the chemical treatments in this present study. Tensile properties of the developed composites were evaluated based on molarities of chemical treatment and % fibre loading. Scanning electron microscopy was used to characterize the morphologies of the fractured surfaces of composites. Obtained tensile test results revealed significant enhancement in the tensile properties of composites, with the optimum combination of tensile properties presented by 2 wt% white cow hair biofibre reinforcement treated with 0.15 M sodium hydroxide. Observations from the fractographic analysis of the developed composites revealed shearing of the polymer matrix at the fibre-matrix interface and no fibre pullout behaviour.展开更多
文摘This research has investigated the tensile properties and fractography of animal fibre-reinforced low density polyethylene composites. The composites were synthesized by hot compression moulding using chemically modified white and black cow hair biofibres as the reinforcing phase of composites. Alkaline solutions of varying molarities were used to prepare the chemical treatments in this present study. Tensile properties of the developed composites were evaluated based on molarities of chemical treatment and % fibre loading. Scanning electron microscopy was used to characterize the morphologies of the fractured surfaces of composites. Obtained tensile test results revealed significant enhancement in the tensile properties of composites, with the optimum combination of tensile properties presented by 2 wt% white cow hair biofibre reinforcement treated with 0.15 M sodium hydroxide. Observations from the fractographic analysis of the developed composites revealed shearing of the polymer matrix at the fibre-matrix interface and no fibre pullout behaviour.