As environmentally benign and high-efficiency energy storage devices,sodium-ion capacitors(SICs),which combine the merits of batteries and supercapacitors,are considered to have potentially high energy/power densities...As environmentally benign and high-efficiency energy storage devices,sodium-ion capacitors(SICs),which combine the merits of batteries and supercapacitors,are considered to have potentially high energy/power densities and long lifespan.However,the lack of high-rate anodes that can match the high-power-density cathode hinders the commercial application of SICs.In this work,heterostructured Fe/FeSe_(2)/Fe_(3)Se_(4)nanocomposite is pre-pared by chemical vapor deposition(CVD)method and investigated as the anode for SICs.Through heterointerface manipulation,Fe/FeSe_(2)/Fe_(3)Se_(4)demonstrates better sodium ion storage performances than the pure FeSe_(2)and FeSe_(2)/Fe_(3)Se_(4).It can deliver a specific capacity of 484.8 mAh·g^(-1)after 100 cycles at 0.5 A·g^(-1),as well as a good capacity retention.The excellent performance of Fe/FeSe_(2)/Fe_(3)Se_(4)nanocomposite can be ascribed to the synergistic effect of the heterointerface engineered components,where FeSe_(2)and Fe_(3)Se_(4) are responsible for offering a high capacity and metallic Fe can server as mini-current collectors,effec-tively accelerating the electron and charge transfer behavior.Meanwhile,the heterointerface significantly facilitates the sodium ion fast transport,and retards the structural variation during cycling.FeSe-1000//activated carbon(AC)SIC affords a high energy density of 112 Wh·kg^(-1)at 107.5 W·kg^(-1),its power density can achieve 10,750 W·kg^(-1)with remained energy density of 44.2 Wh·kg^(-1),as well as an outstanding cycling stability,demonstrating this effective heterointerface engineered anode strategy for high-performance SICs.展开更多
基金financially supported by the Natural Science Foundation of Hebei Province of China(Nos.E2021202011 and E2018202123)Jian-Hua Research Foundation of Hebei University of Technology(No.HB1921)+4 种基金High-strength,Highprecision,Superconducting Rail Transit Aluminum Research and Development and Industrialization Projects(No.2019TSLH0110)"One Belt,One Road"Technology Innovation Cooperation Project of Tianjin(No.18PTZWHZ00220)Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program(No.075-15-2020-934)Foundation of Strengthening Program(No.2019-JCJQ-142-00)the Exchange Project of the Third Meeting of the Science and Technology Cooperation Subcommittee of the China-Ukraine Intergovernmental Cooperation Committee(No.CU03-11).
文摘As environmentally benign and high-efficiency energy storage devices,sodium-ion capacitors(SICs),which combine the merits of batteries and supercapacitors,are considered to have potentially high energy/power densities and long lifespan.However,the lack of high-rate anodes that can match the high-power-density cathode hinders the commercial application of SICs.In this work,heterostructured Fe/FeSe_(2)/Fe_(3)Se_(4)nanocomposite is pre-pared by chemical vapor deposition(CVD)method and investigated as the anode for SICs.Through heterointerface manipulation,Fe/FeSe_(2)/Fe_(3)Se_(4)demonstrates better sodium ion storage performances than the pure FeSe_(2)and FeSe_(2)/Fe_(3)Se_(4).It can deliver a specific capacity of 484.8 mAh·g^(-1)after 100 cycles at 0.5 A·g^(-1),as well as a good capacity retention.The excellent performance of Fe/FeSe_(2)/Fe_(3)Se_(4)nanocomposite can be ascribed to the synergistic effect of the heterointerface engineered components,where FeSe_(2)and Fe_(3)Se_(4) are responsible for offering a high capacity and metallic Fe can server as mini-current collectors,effec-tively accelerating the electron and charge transfer behavior.Meanwhile,the heterointerface significantly facilitates the sodium ion fast transport,and retards the structural variation during cycling.FeSe-1000//activated carbon(AC)SIC affords a high energy density of 112 Wh·kg^(-1)at 107.5 W·kg^(-1),its power density can achieve 10,750 W·kg^(-1)with remained energy density of 44.2 Wh·kg^(-1),as well as an outstanding cycling stability,demonstrating this effective heterointerface engineered anode strategy for high-performance SICs.