Synthesis and characterization of hybrid fluorescent superparamagnetic core-shell particles of Fe@C-CNx composition are presented for the first time. The prepared Fe@C-CNx hybrid nanoparticles were found to possess mu...Synthesis and characterization of hybrid fluorescent superparamagnetic core-shell particles of Fe@C-CNx composition are presented for the first time. The prepared Fe@C-CNx hybrid nanoparticles were found to possess multifunctionality by exhibiting strong superparamagnetic properties and bright fluorescence emissions at 500 nm after the excitation with light in the UV-visible range. Fe@C-CNx also exhibits photocatalytic activities for organic dye degradation comparable to pure amorphous CNx with reusability through magnetic separation. The combination of magnetic and fluorescent properties of core-shell Fe@C-CNx nanoparticles opens opportunities for their application as sensors and magnet manipulated reusable photocatalysts. Superparamagnetic Fe@C core-shell nanoparticles were used as the template material in the synthesis, where the carbon shell was functionalized through one-step free-radical addition of alkyl groups terminated with carboxylic acid moieties. The method utilizes the organic acyl peroxide of dicarboxylic acid (succinic acid peroxide) as a non-oxidant functional free radical precursor for functionalization. Further, covalently functionalized succinyl-Fe@C core-shell nanoparticles were coated with the amorphous carbon nitride (CNx) generated by an in-situ solution-based chemical reaction of cyanuric chloride with lithium nitride. A detailed physicochemical characterization of the microstructure, magnetic and fluorescence properties of the synthesized hybrid nanoparticles is provided.展开更多
文摘Synthesis and characterization of hybrid fluorescent superparamagnetic core-shell particles of Fe@C-CNx composition are presented for the first time. The prepared Fe@C-CNx hybrid nanoparticles were found to possess multifunctionality by exhibiting strong superparamagnetic properties and bright fluorescence emissions at 500 nm after the excitation with light in the UV-visible range. Fe@C-CNx also exhibits photocatalytic activities for organic dye degradation comparable to pure amorphous CNx with reusability through magnetic separation. The combination of magnetic and fluorescent properties of core-shell Fe@C-CNx nanoparticles opens opportunities for their application as sensors and magnet manipulated reusable photocatalysts. Superparamagnetic Fe@C core-shell nanoparticles were used as the template material in the synthesis, where the carbon shell was functionalized through one-step free-radical addition of alkyl groups terminated with carboxylic acid moieties. The method utilizes the organic acyl peroxide of dicarboxylic acid (succinic acid peroxide) as a non-oxidant functional free radical precursor for functionalization. Further, covalently functionalized succinyl-Fe@C core-shell nanoparticles were coated with the amorphous carbon nitride (CNx) generated by an in-situ solution-based chemical reaction of cyanuric chloride with lithium nitride. A detailed physicochemical characterization of the microstructure, magnetic and fluorescence properties of the synthesized hybrid nanoparticles is provided.