In the present work,the biomedical as-cast pure Mg,Mg–1 Ca and Mg–2 Sr alloys were processed with equal channel angular pressing(ECAP)technique to develop ultrafine microstructure within the materials,and their micr...In the present work,the biomedical as-cast pure Mg,Mg–1 Ca and Mg–2 Sr alloys were processed with equal channel angular pressing(ECAP)technique to develop ultrafine microstructure within the materials,and their microstructures,mechanical properties,degradation behavior,cytocompatibility in vitro and biocompatibility in vivo were studied comprehensively.Finer-gained microstructures and improved mechanical properties of these three materials after ECAP were confirmed compared to their as-cast counterparts.Moreover,after ECAP the degradation rate of pure Mg was increased while that of Mg–1 Ca or Mg–2 Sr alloys decreased compared to the ascast counterparts.Additionally,good in vitro cytocompatibility and in vivo biocompatibility of these three materials were revealed by cell cultural tests using osteoblastic MC3 T3-E1 and human mesenchymal stem cells(h MSC)and in vivo animal tests at the lateral epicondyle of SD-rats’femur.This study offers an alternative powerful avenue to achieve good comprehensive properties of magnesium-based biodegradable metals.It might also help to extend the applied range of magnesium-based biodegradable metals in orthopedic field.展开更多
基金supported by National Key Research and Development Program of China(No.2018YFC1106600)National Natural Science Foundation of China(Grant No.51871004)+1 种基金NSFC/RGC Joint Research Scheme(Grant No.51661165014)the partial financial support in the framework of the RFBR project 20-58-S52001МНТ_а.
文摘In the present work,the biomedical as-cast pure Mg,Mg–1 Ca and Mg–2 Sr alloys were processed with equal channel angular pressing(ECAP)technique to develop ultrafine microstructure within the materials,and their microstructures,mechanical properties,degradation behavior,cytocompatibility in vitro and biocompatibility in vivo were studied comprehensively.Finer-gained microstructures and improved mechanical properties of these three materials after ECAP were confirmed compared to their as-cast counterparts.Moreover,after ECAP the degradation rate of pure Mg was increased while that of Mg–1 Ca or Mg–2 Sr alloys decreased compared to the ascast counterparts.Additionally,good in vitro cytocompatibility and in vivo biocompatibility of these three materials were revealed by cell cultural tests using osteoblastic MC3 T3-E1 and human mesenchymal stem cells(h MSC)and in vivo animal tests at the lateral epicondyle of SD-rats’femur.This study offers an alternative powerful avenue to achieve good comprehensive properties of magnesium-based biodegradable metals.It might also help to extend the applied range of magnesium-based biodegradable metals in orthopedic field.