This paper proposes the use of solar-sail technology currently under development at NASA Langley Research Center for a CubeSat rendezvous mission with asteroid 2016 HO_(3),a quasi-satellite of Earth.Time-optimal traje...This paper proposes the use of solar-sail technology currently under development at NASA Langley Research Center for a CubeSat rendezvous mission with asteroid 2016 HO_(3),a quasi-satellite of Earth.Time-optimal trajectories are sought for within a 2022–202_(3) launch window,starting from an assumed launcher ejection condition in the Earth-Moon system.The optimal control problem is solved through a particular implementation of a direct pseudo-spectral method for which initial guesses are generated through a relatively simple and straightforward genetic algorithm search on the optimal launch date and sail attitude.The results show that the trajectories take 2.16–4.21 years to complete,depending on the assumed solar-sail reflectance model and solar-sail technology.To assess the performance of solar-sail propulsion for this mission,the trajectory is also designed assuming the use of solar electric propulsion.The resulting fuel-optimal trajectories take longer to complete than the solar-sail trajectories and require a propellant consumption that exceeds the expected propellant capacity onboard the CubeSat.This comparison demonstrates the superior performance of solar-sail technology for this mission.展开更多
基金Jeannette Heiligers would like to acknowledge support from the Marie Skłdowska-Curie Individual Fellowship 658645-S4ILS:Solar Sailing for Space Situational Awareness in the Lunar System.
文摘This paper proposes the use of solar-sail technology currently under development at NASA Langley Research Center for a CubeSat rendezvous mission with asteroid 2016 HO_(3),a quasi-satellite of Earth.Time-optimal trajectories are sought for within a 2022–202_(3) launch window,starting from an assumed launcher ejection condition in the Earth-Moon system.The optimal control problem is solved through a particular implementation of a direct pseudo-spectral method for which initial guesses are generated through a relatively simple and straightforward genetic algorithm search on the optimal launch date and sail attitude.The results show that the trajectories take 2.16–4.21 years to complete,depending on the assumed solar-sail reflectance model and solar-sail technology.To assess the performance of solar-sail propulsion for this mission,the trajectory is also designed assuming the use of solar electric propulsion.The resulting fuel-optimal trajectories take longer to complete than the solar-sail trajectories and require a propellant consumption that exceeds the expected propellant capacity onboard the CubeSat.This comparison demonstrates the superior performance of solar-sail technology for this mission.