This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The ...This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The yield strength (YS), ultimate tensile strength (UTS) and the elongation of 50 specimens of the three materials were determined using a universal testing machine. Three beams of concrete strength 20 N/mm2 at age 28 days were separately reinforced with bamboo, rattan and steel bars of same percentage, while the stirrups were essentially mild steel bars. The beams were subjected to centre-point flexural loading according to BS 1881 to evaluate the flexural behaviour. The YS of bamboo and rattan bars were 13% and 45% of that of steel respectively, while their UTS were 16% and 62% of that of steel in the same order. The elongation of bamboo, rattan and steel were 7.42%, 10% and 14.7% respectively. The natural rebars were less than the 12% minimum requirement of BS 4449. The load-deflection plots of bamboo and steel RC beams were quadratic, while rattan RC beams had curvilinear trend. The stiffness of bamboo RC beams (BB) and rattan RC beams (RB) were 32% and 13.5% of the stiffness of steel RC beams (SB). The post-first crack residual flexural strength was 41% for BB and SB, while RB was 25%. Moreover, the moment capacities of BB and RB corresponded to 51% and 21% respectively of the capacity of steel RC beams. The remarkable gap between the flexural capacities of the natural rebars and that of steel can be traced not only to the tensile strength but also the weak bonding at the bar-concrete interface. It can be concluded that the bamboo bars are suitable rebars for non-load bearing and lightweight RC flexural structures, while more pre-strengthening treatment is required more importantly for rattan for improved interfacial bonding and load-carrying capacity.展开更多
Concrete research is gradually shifting from the conventional strength-based approach to durability-centred in the past decade. Durability is the measure of the robustness of constructed facilities against deteriorati...Concrete research is gradually shifting from the conventional strength-based approach to durability-centred in the past decade. Durability is the measure of the robustness of constructed facilities against deterioration tendencies. The rate of deterioration is affected by the loading condition, and more importantly the physical and chemical nature of the host environments. This paper reports the experimental investigation of unstressed concrete substructure in the natural (uncontaminated) and cassava’s hydrocyanide effluent-polluted soils on the compressive and flexural strengths of buried concrete specimens for a maximum of 84 days. The compressive strengths of the cubes were tested every 7 days until the 84th day, while the beams were only subjected to third-point loading flexural tests at age 84 days. The compressive strength of concrete specimens in the two soil environments increased, though the trend was lower in the polluted soil. The strength reduced by 2.50% to 9.47% between the 7th and 28th days, but steadily between the 28th and 84th days with strength loss of 9.95% (COV = 2.64%). The load-deflection curves were quadratic for the beams in the two geo-environments. The beams in cyanide-polluted soil lost 34.5% of its flexural stiffness, while its loss of load-carrying capacities at the first crack and ultimate failure was 15.8% and 20% respectively. Higher degree of deterioration is certain for loaded concrete substructures in similar conditions. Hence, prior knowledge of soil chemistry is crucial to determining suitable concrete grade and nominal cover for durable substructural elements.展开更多
文摘This study comparatively evaluated the flexural performance and deformation characteristics of concrete elements reinforced with bamboo (Bambusa vulgaris), rattan (Calamuc deerratus) and the twisted steel rebars. The yield strength (YS), ultimate tensile strength (UTS) and the elongation of 50 specimens of the three materials were determined using a universal testing machine. Three beams of concrete strength 20 N/mm2 at age 28 days were separately reinforced with bamboo, rattan and steel bars of same percentage, while the stirrups were essentially mild steel bars. The beams were subjected to centre-point flexural loading according to BS 1881 to evaluate the flexural behaviour. The YS of bamboo and rattan bars were 13% and 45% of that of steel respectively, while their UTS were 16% and 62% of that of steel in the same order. The elongation of bamboo, rattan and steel were 7.42%, 10% and 14.7% respectively. The natural rebars were less than the 12% minimum requirement of BS 4449. The load-deflection plots of bamboo and steel RC beams were quadratic, while rattan RC beams had curvilinear trend. The stiffness of bamboo RC beams (BB) and rattan RC beams (RB) were 32% and 13.5% of the stiffness of steel RC beams (SB). The post-first crack residual flexural strength was 41% for BB and SB, while RB was 25%. Moreover, the moment capacities of BB and RB corresponded to 51% and 21% respectively of the capacity of steel RC beams. The remarkable gap between the flexural capacities of the natural rebars and that of steel can be traced not only to the tensile strength but also the weak bonding at the bar-concrete interface. It can be concluded that the bamboo bars are suitable rebars for non-load bearing and lightweight RC flexural structures, while more pre-strengthening treatment is required more importantly for rattan for improved interfacial bonding and load-carrying capacity.
文摘Concrete research is gradually shifting from the conventional strength-based approach to durability-centred in the past decade. Durability is the measure of the robustness of constructed facilities against deterioration tendencies. The rate of deterioration is affected by the loading condition, and more importantly the physical and chemical nature of the host environments. This paper reports the experimental investigation of unstressed concrete substructure in the natural (uncontaminated) and cassava’s hydrocyanide effluent-polluted soils on the compressive and flexural strengths of buried concrete specimens for a maximum of 84 days. The compressive strengths of the cubes were tested every 7 days until the 84th day, while the beams were only subjected to third-point loading flexural tests at age 84 days. The compressive strength of concrete specimens in the two soil environments increased, though the trend was lower in the polluted soil. The strength reduced by 2.50% to 9.47% between the 7th and 28th days, but steadily between the 28th and 84th days with strength loss of 9.95% (COV = 2.64%). The load-deflection curves were quadratic for the beams in the two geo-environments. The beams in cyanide-polluted soil lost 34.5% of its flexural stiffness, while its loss of load-carrying capacities at the first crack and ultimate failure was 15.8% and 20% respectively. Higher degree of deterioration is certain for loaded concrete substructures in similar conditions. Hence, prior knowledge of soil chemistry is crucial to determining suitable concrete grade and nominal cover for durable substructural elements.