This paper presents a model of cancer diagnosis using principal electrical parameters of tumor cells such as the relative permittivity and the conductivity. The proposed model involves a square microstrip antenna and ...This paper presents a model of cancer diagnosis using principal electrical parameters of tumor cells such as the relative permittivity and the conductivity. The proposed model involves a square microstrip antenna and breast phantom comprising a tumor cell. The radiation properties of the designed antenna at the ISM bands, such as the Return Loss (RL), the current density, the electrical field and the Specific Absorption Rate (SAR) are exploited for diagnosing purposes. The Ansoft HFSS (13.0) simulated results show that the difference in terms of the RL, the current density, the electrical field and the SAR is higher than 2 dB, 40 A/m2, 100 V/m and 20 W/kg respectively, once the tumor exists inside the breast model. This proposed technique in turn can be exploited to distinguish malignant cells inside the women breast in earlier stages as compared to other traditional techniques such as mammography, X-ray, ultra-sound, tomography and MRI.展开更多
This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several e...This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several experiments were carried out using a motion capture system(VICON) and inertial sensors to identify the human posture during the sit-to-stand motion.The EJAD uses only two inertial measurement units(IMUs) fused through an adaptive neuro-fuzzy inference systems(ANFIS) algorithm to imitate the real motion of the caregiver.The EJAD consists of two main parts,a robot arm and an active walker.The robot arm is a 2-degree-of-freedom(2-DOF) planar manipulator.In addition,a back support with a passive joint is used to support the patient s back.The IMUs on the leg and trunk of the patient are used to compensate for and adapt to the EJAD system motion depending on the obtained patient posture.The ANFIS algorithm is used to train the fuzzy system that converts the IMUs signals to the right posture of the patient.A control scheme is proposed to control the system motion based on practical measurements taken from the experiments.A computer simulation showed a relatively good performance of the EJAD in assisting the patient.展开更多
文摘This paper presents a model of cancer diagnosis using principal electrical parameters of tumor cells such as the relative permittivity and the conductivity. The proposed model involves a square microstrip antenna and breast phantom comprising a tumor cell. The radiation properties of the designed antenna at the ISM bands, such as the Return Loss (RL), the current density, the electrical field and the Specific Absorption Rate (SAR) are exploited for diagnosing purposes. The Ansoft HFSS (13.0) simulated results show that the difference in terms of the RL, the current density, the electrical field and the SAR is higher than 2 dB, 40 A/m2, 100 V/m and 20 W/kg respectively, once the tumor exists inside the breast model. This proposed technique in turn can be exploited to distinguish malignant cells inside the women breast in earlier stages as compared to other traditional techniques such as mammography, X-ray, ultra-sound, tomography and MRI.
基金supported in part by a scholarship provided by the Mission DepartmentMinistry of Higher Education of the Government of Egypt
文摘This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several experiments were carried out using a motion capture system(VICON) and inertial sensors to identify the human posture during the sit-to-stand motion.The EJAD uses only two inertial measurement units(IMUs) fused through an adaptive neuro-fuzzy inference systems(ANFIS) algorithm to imitate the real motion of the caregiver.The EJAD consists of two main parts,a robot arm and an active walker.The robot arm is a 2-degree-of-freedom(2-DOF) planar manipulator.In addition,a back support with a passive joint is used to support the patient s back.The IMUs on the leg and trunk of the patient are used to compensate for and adapt to the EJAD system motion depending on the obtained patient posture.The ANFIS algorithm is used to train the fuzzy system that converts the IMUs signals to the right posture of the patient.A control scheme is proposed to control the system motion based on practical measurements taken from the experiments.A computer simulation showed a relatively good performance of the EJAD in assisting the patient.