期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of Multicollinearity on Type I Error of Some Methods of Detecting Heteroscedasticity in Linear Regression Model
1
作者 Olusegun Olatayo Alabi Kayode Ayinde +2 位作者 omowumi esther babalola Hamidu Abimbola Bello Edward Charles Okon 《Open Journal of Statistics》 2020年第4期664-677,共14页
Heteroscedasticity and multicollinearity are serious problems when they exist in econometrics data. These problems exist as a result of violating the assumptions of equal variance between the error terms and that of i... Heteroscedasticity and multicollinearity are serious problems when they exist in econometrics data. These problems exist as a result of violating the assumptions of equal variance between the error terms and that of independence between the explanatory variables of the model. With these assumption violations, Ordinary Least Square Estimator</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">(OLS) will not give best linear unbiased, efficient and consistent estimator. In practice, there are several structures of heteroscedasticity and several methods of heteroscedasticity detection. For better estimation result, best heteroscedasticity detection methods must be determined for any structure of heteroscedasticity in the presence of multicollinearity between the explanatory variables of the model. In this paper we examine the effects of multicollinearity on type I error rates of some methods of heteroscedasticity detection in linear regression model in other to determine the best method of heteroscedasticity detection to use when both problems exist in the model. Nine heteroscedasticity detection methods were considered with seven heteroscedasticity structures. Simulation study was done via a Monte Carlo experiment on a multiple linear regression model with 3 explanatory variables. This experiment was conducted 1000 times with linear model parameters of </span><span style="white-space:nowrap;"><em><span style="font-family:Verdana;">β</span></em><sub><span style="font-family:Verdana;">0</span></sub><span style="font-family:Verdana;"> = 4 , </span><em><span style="font-family:Verdana;">β</span></em><sub><span style="font-family:Verdana;">1</span></sub><span style="font-family:Verdana;"> = 0.4 , </span><em><span style="font-family:Verdana;">β</span></em><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">= 1.5</span></span></span><span style="font-family:""><span style="font-family:Verdana;"> and </span><em style="font-family:""><span style="font-family:Verdana;">β</span><span style="font-family:Verdana;"><sub>3 </sub></span></em><span style="font-family:Verdana;">= 3.6</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">Five (5) </span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">levels of</span><span style="white-space:nowrap;font-family:Verdana;"> </span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">mulicollinearity </span></span><span style="font-family:Verdana;">are </span><span style="font-family:Verdana;">with seven</span><span style="font-family:""> </span><span style="font-family:Verdana;">(7) different sample sizes. The method’s performances were compared with the aids of set confidence interval (C.I</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;">) criterion. Results showed that whenever multicollinearity exists in the model with any forms of heteroscedasticity structures, Breusch-Godfrey (BG) test is the best method to determine the existence of heteroscedasticity at all chosen levels of significance. 展开更多
关键词 Regression Model Heteroscedasticity Methods Heteroscedasticity Structures MULTICOLLINEARITY Monte Carlo Study Significance Levels Type I Error Rates
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部