It is highly desirable to seek green and sustainable technologies,such as employing photo thermal effects to drive energy catalysis processes to address the high energy demand and associated environmental impacts indu...It is highly desirable to seek green and sustainable technologies,such as employing photo thermal effects to drive energy catalysis processes to address the high energy demand and associated environmental impacts induced by the current methods.The photothermocatalysis process is an emerging research area with great potential in efficiently converting solar energy through various catalytic reactions.However,achieving simultaneously high conversion efficiency,cyclability,and durability is still a daunting challenge.Thus,tremendous work is still needed to enhance solar photo thermal catalytic conversion and promote its large-scale applications.This review developed the principles of coupling solar photon and thermal fields underlying the photothermal effect,exploration of efficient nanocatalysts,development of optofluidic reactor model,and photo thermal synergistic-driven CO_(2) reduction mechanisms.The ultimate goal was to provide an effective approach that can effectively convert solar energy into photocarriers/hot-electrons and heat,and importantly,can couple them to regulate catalysis reaction pathways toward the production of value-added fuel and chemical energy.展开更多
基金financially supported by the China National Key Research and Development Plan Project(No.2018YFA0702300)the National Natural Science Foundation of China(No.52227813)。
文摘It is highly desirable to seek green and sustainable technologies,such as employing photo thermal effects to drive energy catalysis processes to address the high energy demand and associated environmental impacts induced by the current methods.The photothermocatalysis process is an emerging research area with great potential in efficiently converting solar energy through various catalytic reactions.However,achieving simultaneously high conversion efficiency,cyclability,and durability is still a daunting challenge.Thus,tremendous work is still needed to enhance solar photo thermal catalytic conversion and promote its large-scale applications.This review developed the principles of coupling solar photon and thermal fields underlying the photothermal effect,exploration of efficient nanocatalysts,development of optofluidic reactor model,and photo thermal synergistic-driven CO_(2) reduction mechanisms.The ultimate goal was to provide an effective approach that can effectively convert solar energy into photocarriers/hot-electrons and heat,and importantly,can couple them to regulate catalysis reaction pathways toward the production of value-added fuel and chemical energy.