As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy i...As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment.A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware.The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment.An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance;Each hypervisor should be examined to meet specific needs.The main objective of this study is to provide accurate results to compare the performance of Hyper-V and Kernel-based Virtual Machine(KVM)while implementing different cryptographic algorithms to guide cloud service providers and end users in choosing the most suitable hypervisor for their cryptographic needs.This study evaluated the efficiency of two hypervisors,Hyper-V and KVM,in implementing six cryptographic algorithms:Rivest,Shamir,Adleman(RSA),Advanced Encryption Standard(AES),Triple Data Encryption Standard(TripleDES),Carlisle Adams and Stafford Tavares(CAST-128),BLOWFISH,and TwoFish.The study’s findings show that KVM outperforms Hyper-V,with 12.2%less Central Processing Unit(CPU)use and 12.95%less time overall for encryption and decryption operations with various file sizes.The study’s findings emphasize how crucial it is to pick a hypervisor that is appropriate for cryptographic needs in a cloud environment,which could assist both cloud service providers and end users.Future research may focus more on how various hypervisors perform while handling cryptographic workloads.展开更多
In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things...In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things(IoT)into education can facilitate the teaching and learning process and expand the context in which students learn.Nevertheless,learning data is very sensitive and must be protected when transmitted over the network or stored in data centers.Moreover,the identity and the authenticity of interacting students,instructors,and staff need to be verified to mitigate the impact of attacks.However,most of the current security and authentication schemes are centralized,relying on trusted third-party cloud servers,to facilitate continuous secure communication.In addition,most of these schemes are resourceintensive;thus,security and efficiency issues arise when heterogeneous and resource-limited IoT devices are being used.In this paper,we propose a blockchain-based architecture that accurately identifies and authenticates learners and their IoT devices in a decentralized manner and prevents the unauthorized modification of stored learning records in a distributed university network.It allows students and instructors to easily migrate to and join multiple universities within the network using their identity without the need for user re-authentication.The proposed architecture was tested using a simulation tool,and measured to evaluate its performance.The simulation results demonstrate the ability of the proposed architecture to significantly increase the throughput of learning transactions(40%),reduce the communication overhead and response time(26%),improve authentication efficiency(27%),and reduce the IoT power consumption(35%)compared to the centralized authentication mechanisms.In addition,the security analysis proves the effectiveness of the proposed architecture in resisting various attacks and ensuring the security requirements of learning data in the university network.展开更多
Securing digital images is becoming an important concern in today's information security due to the extensive use of secure images that are either transmitted over a network or stored on disks. Image encryption is...Securing digital images is becoming an important concern in today's information security due to the extensive use of secure images that are either transmitted over a network or stored on disks. Image encryption is the most effective way to fulfil confidentiality and protect the privacy of images. Nevertheless, owing to the large size and complex structure of digital images, the computational overhead and processing time needed to carry out full image encryption prove to be limiting factors that inhibit it of being used more heavily in real time. To solve this problem, many recent studies use the selective encryption approach to encrypt significant parts of images with a hope to reduce the encryption overhead. However, it is necessary to realistically evaluate its performance compared to full encryption. In this paper, we study the performance and efficiency of image segmentation methods used in the selective encryption approach, such as edges and face detection methods, in determining the most important parts of visual images. Experiments were performed to analyse the computational results obtained by selective image encryption compared to full image encryption using symmetric encryption algorithms. Experiment results have proven that the selective encryption approach based on edge and face detection can significantly reduce the time of encrypting still visual images as compared to full encryption. Thus, this approach can be considered a good alternative in the implementation of real-time applications that require adequate security levels.展开更多
文摘As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment.A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware.The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment.An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance;Each hypervisor should be examined to meet specific needs.The main objective of this study is to provide accurate results to compare the performance of Hyper-V and Kernel-based Virtual Machine(KVM)while implementing different cryptographic algorithms to guide cloud service providers and end users in choosing the most suitable hypervisor for their cryptographic needs.This study evaluated the efficiency of two hypervisors,Hyper-V and KVM,in implementing six cryptographic algorithms:Rivest,Shamir,Adleman(RSA),Advanced Encryption Standard(AES),Triple Data Encryption Standard(TripleDES),Carlisle Adams and Stafford Tavares(CAST-128),BLOWFISH,and TwoFish.The study’s findings show that KVM outperforms Hyper-V,with 12.2%less Central Processing Unit(CPU)use and 12.95%less time overall for encryption and decryption operations with various file sizes.The study’s findings emphasize how crucial it is to pick a hypervisor that is appropriate for cryptographic needs in a cloud environment,which could assist both cloud service providers and end users.Future research may focus more on how various hypervisors perform while handling cryptographic workloads.
文摘In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things(IoT)into education can facilitate the teaching and learning process and expand the context in which students learn.Nevertheless,learning data is very sensitive and must be protected when transmitted over the network or stored in data centers.Moreover,the identity and the authenticity of interacting students,instructors,and staff need to be verified to mitigate the impact of attacks.However,most of the current security and authentication schemes are centralized,relying on trusted third-party cloud servers,to facilitate continuous secure communication.In addition,most of these schemes are resourceintensive;thus,security and efficiency issues arise when heterogeneous and resource-limited IoT devices are being used.In this paper,we propose a blockchain-based architecture that accurately identifies and authenticates learners and their IoT devices in a decentralized manner and prevents the unauthorized modification of stored learning records in a distributed university network.It allows students and instructors to easily migrate to and join multiple universities within the network using their identity without the need for user re-authentication.The proposed architecture was tested using a simulation tool,and measured to evaluate its performance.The simulation results demonstrate the ability of the proposed architecture to significantly increase the throughput of learning transactions(40%),reduce the communication overhead and response time(26%),improve authentication efficiency(27%),and reduce the IoT power consumption(35%)compared to the centralized authentication mechanisms.In addition,the security analysis proves the effectiveness of the proposed architecture in resisting various attacks and ensuring the security requirements of learning data in the university network.
文摘Securing digital images is becoming an important concern in today's information security due to the extensive use of secure images that are either transmitted over a network or stored on disks. Image encryption is the most effective way to fulfil confidentiality and protect the privacy of images. Nevertheless, owing to the large size and complex structure of digital images, the computational overhead and processing time needed to carry out full image encryption prove to be limiting factors that inhibit it of being used more heavily in real time. To solve this problem, many recent studies use the selective encryption approach to encrypt significant parts of images with a hope to reduce the encryption overhead. However, it is necessary to realistically evaluate its performance compared to full encryption. In this paper, we study the performance and efficiency of image segmentation methods used in the selective encryption approach, such as edges and face detection methods, in determining the most important parts of visual images. Experiments were performed to analyse the computational results obtained by selective image encryption compared to full image encryption using symmetric encryption algorithms. Experiment results have proven that the selective encryption approach based on edge and face detection can significantly reduce the time of encrypting still visual images as compared to full encryption. Thus, this approach can be considered a good alternative in the implementation of real-time applications that require adequate security levels.