The community of Figuig is located in a desert area, east of Morocco. It is characterized by an arid climate. Part of the aquifers of the area has a high salinity which creates even worst conditions for the use of the...The community of Figuig is located in a desert area, east of Morocco. It is characterized by an arid climate. Part of the aquifers of the area has a high salinity which creates even worst conditions for the use of the scarce water available in the area. Therefore, it is essential to develop new water resources, especially for agriculture. For this reason, reclaiming wastewater for agricultural use is an essential strategy to increase water resources. The studied system is a wastewater treatment plant (WWTP) with stabilisation ponds; it treats a part of the wastewater of Figuig. The monitoring of the WWTP will allow to the physico-chemical and biological characterization of the treated water, and then, to verify two principal points: (1) the physico-chemical and pathogen parasites elimination; (2) the possibility of the treated water reuse in agricultural irrigation. The reductions recorded at the WWTP show a relatively preferment operation with an average decrease of 3.17 Ulog for faecal coliforms and 50-60% for organic matter. It was observed that the taxonomic density is slow in the WWTP; observed species are generally Cyanobacteria, Euglénophycea and Chlorophycea characteristic of eutrophic water sources.展开更多
文摘The community of Figuig is located in a desert area, east of Morocco. It is characterized by an arid climate. Part of the aquifers of the area has a high salinity which creates even worst conditions for the use of the scarce water available in the area. Therefore, it is essential to develop new water resources, especially for agriculture. For this reason, reclaiming wastewater for agricultural use is an essential strategy to increase water resources. The studied system is a wastewater treatment plant (WWTP) with stabilisation ponds; it treats a part of the wastewater of Figuig. The monitoring of the WWTP will allow to the physico-chemical and biological characterization of the treated water, and then, to verify two principal points: (1) the physico-chemical and pathogen parasites elimination; (2) the possibility of the treated water reuse in agricultural irrigation. The reductions recorded at the WWTP show a relatively preferment operation with an average decrease of 3.17 Ulog for faecal coliforms and 50-60% for organic matter. It was observed that the taxonomic density is slow in the WWTP; observed species are generally Cyanobacteria, Euglénophycea and Chlorophycea characteristic of eutrophic water sources.