期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Theoretical Determination of Influence of the Metallic State of Oxidation toward Cytotoxic Activity: Case of Ruthenium Complexes 被引量:1
1
作者 Bamba Kafoumba ouattara wawohinlin patrice +5 位作者 Diarrassouba Fatogoma Lamoussa ouattara Massapihanhoro Pierre ouattara Kouakou Nobel N’guessan Ehouman Ahissan Donatien Ziao Nahossé 《Computational Chemistry》 2021年第2期97-119,共23页
Ruthenium complexes present two states of oxidation that are Ru(II) and Ru(III). Both are assumed to present cytotoxic activity at ground state. On the purpose of highlighting their differences, DFT, TD-DFT and NBO ha... Ruthenium complexes present two states of oxidation that are Ru(II) and Ru(III). Both are assumed to present cytotoxic activity at ground state. On the purpose of highlighting their differences, DFT, TD-DFT and NBO have been performed at both Wb97xd/Lanl2dz and B3lyp/Lanl2dz levels. NBO program shows that both groups of ruthenium complexes present almost the same charge of Ru atom. Moreover, they display nearly the same structure of valence orbitals of the ruthenium. However, when it comes to compare their frontier orbitals HOMO and LUMO, we notice that the chloride atom has a great influence on their energy. The lack of Chloride atoms reduces the energy of frontier orbitals regardless of the functional. And the more the number of chloride atoms, the higher the energy. Also, RuCl<sub>3</sub>Terpy and α-RuCl<sub>2</sub>(Azpy)<sub>2</sub> have been discovered to display the best energy suitable for reaction as cytotoxic agents. Yet, both are from groups different. Thus, at ground state, there is practically no difference between both groups. However, regarding TDDFT prediction with the determination of vertical electronic affinity VEA and vertical ionization potential VIP both at ground state S and at exciting T1 state, we notice that Ru(II) complexes are not active either in the presence or absence of <sup>3</sup>O<sub>2</sub> molecule. Here, only Ru(III) complexes are able to react on Guanine through their radical cations or by generating the superoxide radical anion <img src="Edit_17bbaac1-501f-4de4-bc6b-4f8b513cc344.png" alt="" />. Therefore, the Ru(III) complexes are assumed to be active both at a fundamental state and under the effect of light for photodynamic therapy. We come to conclude that Ru(II) complexes are not active by excitation as their valence electrons are paired thereby making these complexes more stable. Besides, <img src="Edit_30d3bea0-3cbe-4e08-8438-551a2fa7de22.png" alt="" /> , a Ru(II) molecule that is not active at ground state owing certainly to its C<sub>3</sub> symmetry or Azpy ligand presents all the same a difficult activity on generating <img src="Edit_758504e6-51fe-4300-baef-d6a9f1c4f535.png" alt="" /> . For the coming paper, we intend to check whether Ru(II) complex can be active under the effect of light if it is in a triplet charge state. 展开更多
关键词 NBO TD-DFT Ru(II) Ru(III) Photo-Dynamic Therapy (PDT)
下载PDF
SARs Investigation of α-, β-, γ-, δ-, ε-RuCl2(Azpy)2 Complexes as Antitumor Drugs 被引量:1
2
作者 Kafoumba Bamba ouattara wawohinlin patrice +1 位作者 N’Guessan Kouakou Nobel Nahossé Ziao 《Computational Chemistry》 2016年第1期1-10,共10页
Structure Activity-Relationships (SARs) of the five possible isomers of RuCl<sub>2</sub>(Azpy)<sub>2</sub> were predicted thanks to DFT method. Azpy stands for 2-phenylazopyridine and the struc... Structure Activity-Relationships (SARs) of the five possible isomers of RuCl<sub>2</sub>(Azpy)<sub>2</sub> were predicted thanks to DFT method. Azpy stands for 2-phenylazopyridine and the structure of the isomers α-RuCl<sub>2</sub>(Azpy)<sub>2</sub>, β-RuCl<sub>2</sub>(Azpy)<sub>2</sub>, γ-RuCl2(Azpy)2, δ-RuCl<sub>2</sub>(Azpy)<sub>2</sub> and ε-RuCl<sub>2</sub>(Azpy)<sub>2</sub> call respectively α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl are defined according to chlorine atoms orientations. Hence, they are divided into two groups. In the first group comprising α-Cl, β-Cl and ε-Cl, both chlorine atoms are in cis position and Azpy ligands are intervertical. Whereas the two others isomers (γ-Cl and δ-Cl), they form the second group. Here, both chlorine are in trans position and Azpy are planar. The five synthesized isomers were investigated as potential antitumor agents. Then, regarding the DNA, its bases are stacked by pair. Therefore, complexes are assumed to insert and to stack on them through intercalative mode. So the electronic and geometric structures become more important to describe their SARs. Consequently, group 2 regarding γ-Cl and δ-Cl presents the best structure to allow intercalation between DNA base-pairs. Besides, the energy order of the lower unoccupied molecular orbital (LUMO) of the isomers is ELUMO(β-Cl) > ELUMO(α-Cl) > ELUMO(ε-Cl) > ELUMO(γ-Cl) > ELUMO(δ-Cl). The energy gap between LUMO and HOMO was also sorted as Δ(L-H)(β-Cl) > Δ(L-H)(α-Cl) > Δ(L-H)(ε-Cl) > Δ(L-H)(γ-Cl) > Δ(L-H)(δ-Cl). In addition, the total dipole moment was classified as μ(ε-Cl) > μ(β-Cl) > μ(α-Cl) > μ(γ-Cl) > μ(δ-Cl). Finally, net charge of the ligand Azpy was also classified as QL(δ-Cl) > QL(γ-Cl) > QL(ε-Cl) > QL(α-Cl) > QL(β-Cl). All those parameters show that δ-Cl isomer displays the highest activity as antitumor drug when intercalating between the DNA basepairs Cytosine-Guanine/Cytosine-Guanine (CG/CG). 展开更多
关键词 Structure Activity-Relationship (SARs) Ru (II) Complexes Azpy DFT Lanl2dz DNA-BINDING
下载PDF
Theoretical Investigation of Ru(II) Complexes as Photosensitizer for Photodynamic Therapy
3
作者 Bamba Kafoumba ouattara Lamoussa +5 位作者 Massapihanhoro Pierre ouattara ouattara wawohinlin patrice Diarrassouba Fatogoma N’guessan Kouakou Nobel Ehouman Ahissan Donatien Ziao Nahossé 《Computational Molecular Bioscience》 2022年第2期109-121,共13页
This work was undertaken to see how Ru II complexes can be suitable for photodynamic therapy through theoretical prediction. For that, four Ru II complexes, α-RuCl<sub>2</sub>(Azpy)<sub>2</sub>... This work was undertaken to see how Ru II complexes can be suitable for photodynamic therapy through theoretical prediction. For that, four Ru II complexes, α-RuCl<sub>2</sub>(Azpy)<sub>2</sub>, ,  and  were used in unrestricted state by providing with no more energy than 2.68 eV. The unrestricted state allows the complex molecule to display each of its electrons in one orbital. All the calculations such as optimization, frequency and TD-DFT calculations were performed at WB97XD/Lanl2dz level. It resulted from this investigation that Ru II complexes are active for both mechanisms suitable for photodynamic therapy in presence or absence of <sup>3</sup>O<sub>2</sub>. Moreover, this reaction was assumed to take place only with Guanine DNA base as demonstrated in literature. Therefore, Guanine is admitted as the base most reacting with ruthenium complexes for photodynamic therapy. This work confirms our prediction regarding metallic complexes that are assumed to be photosensitized in condition that an electron must be isolated to favor the excitation. Nevertheless, Ru II complexes are found suitable for superficial therapy while Ru III must be active for deep therapy. 展开更多
关键词 TD-DFT Ru(II) Photo-Dynamic Therapy (PDT) (Un)restricted Model
下载PDF
Quantitative Structure Anti-Cancer Activity Relationship (QSAR) of a Series of Ruthenium Complex Azopyridine by the Density Functional Theory (DFT) Method 被引量:5
4
作者 Kouakou Nobel N’guessan Mamadou Guy-Richard Koné +2 位作者 Kafoumba Bamba ouattara wawohinlin patrice Nahossé Ziao 《Computational Molecular Bioscience》 2017年第2期19-31,共13页
A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) an... A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR). Thus, in order to predict the cytotoxic potentials of these compounds, quantitative structure-activity relationship studies were carried out using the methods of quantum chemistry. Five Quantitative Structure Activity Relationship (QSAR) models were obtained from the determined quantum descriptors and the different activities. The models present the following statistical indicators: regression correlation coefficient R2 = 0.986 - 0.905, standard deviation S = 0.516 - 0.153, Fischer test F = 106.718 - 14.220, correlation coefficient of cross-validation = 0.985- 0.895 and = 0.010 - 0.001. The statistical characteristics of the established QSAR models satisfy the acceptance and external validation criteria, thereby accrediting their good performance. The models developed show that the variation of the free enthalpy of reaction , the dipole moment μ and the charge of the ligand in the complex Ql, are the explanatory and predictive quantum descriptors correlated with the values of the anti-cancer activity of the studied complexes. Moreover, the charge of the ligand is the priority descriptor for the prediction of the cytotoxicity of the compounds studied. Furthermore, QSAR models developed are statistically significant and predictive, and could be used for the design and synthesis of new anti-cancer molecules. 展开更多
关键词 RUTHENIUM Azopyridine Complex ANTI-CANCER QSAR DFT METHOD
下载PDF
NBO Population Analysis and Electronic Calculation of Four Azopyridine Ruthenium Complexes by DFT Method 被引量:1
5
作者 N’Guessan Kouakou Nobel Kafoumba Bamba +1 位作者 ouattara wawohinlin patrice Nahossé Ziao 《Computational Chemistry》 2017年第1期51-64,共14页
The molecular structure, the Natural Bond orbital (NBO) and the Time Dependent-DFT of both isomers cis or γ-Cl and trans or δ-Cl of RuCl2(L)2, where L stands respectively for 2-phenylazopyridine (Azpy), 2,4-dimethyl... The molecular structure, the Natural Bond orbital (NBO) and the Time Dependent-DFT of both isomers cis or γ-Cl and trans or δ-Cl of RuCl2(L)2, where L stands respectively for 2-phenylazopyridine (Azpy), 2,4-dimethyl-6-[phenylazo]pyridine (Dazpy), 2-[(3,5-dimethylphenyl)azopyridine] (Mazpy) and 2-pyridylazonaphtol (Nazpy) were calculated with DFT method at B3LYP/LANL2DZ level. The prediction of the frontier orbitals (Highest Occupied Molecular Orbital or HOMO and Lowest Unoccupied Molecular Orbital or LUMO) shows that the most active complexes suitable for electronic reactions are admitted to be the trans isomers. Moreover, δ-RuCl2 (Azpy)2 is discovered to react more actively as photo-sensitizer since its energy gap is the minimum. Besides, electronic structures of all complexes through NBO calculation indicate that Ru-N bonds are made of delocalization of occupancies from lone pair orbital of N atoms to the ruthenium. Moreover, Ru was assumed to have almost the same charge regardless the structure of the azopyridine ligands in the complex indicating that the ligands provide only a steric effect that is responsible for the ruthenium’s selectivity. Concerning the transition state, NBO analysis also highlights that the transition LP(Ru) π*(N1-N2) does correspond to t2g?π*(L). This transition is assumed to correspond to Metal to Ligand Charge Transfer (MLCT) that is responsible for the photo-sensitiveness of the metallic complex. Besides, TDDFT calculation of complexes showed that δ-RuCl2(Nazpy)2 displays the largest band during the absorption. For that reason, it is admitted to be the best photosensitizer due to a large system of conjugation provided by Nazpy ligand. 展开更多
关键词 Natural BOND ORBITAL (NBO) HOMO LUMO Azopyridine Ligand MLCT LLCT
下载PDF
Molecular Structure, Electronic Structure, Properties and Analyses of Five Azopyridine Ruthenium Complexes α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl of RuCl<sub>2</sub>(4,6-Dimethyl-Phenylazopyridine)<sub>2</sub>as Potential Cancer Drugs: DFT and TD-DFT Investigations
6
作者 Nobel Kouakou N’Guessan Kafoumba Bamba +1 位作者 ouattara wawohinlin patrice NahosséZiao 《Computational Chemistry》 2018年第3期27-46,共20页
Ground state geometries, natural bond orbital (NBO), analysis of frontier molecular orbitals (FMOs), analysis and spectral (RMN and UV-Visible) properties of five azopyridine ruthenium (II) complexes α-Cl, β-Cl, γ-... Ground state geometries, natural bond orbital (NBO), analysis of frontier molecular orbitals (FMOs), analysis and spectral (RMN and UV-Visible) properties of five azopyridine ruthenium (II) complexes α-Cl, β-Cl, γ-Cl, δ-Cl and ε-Cl of RuCl2(Dazpy)2 have been theoretically studied by the Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods using two basis sets: Lanl2DZ and a generic basis set in gas or in chloroform solvent. Dazpy stands for 4,6-dimethyl-phenylazopyridine. Optimized geometry shows that, except β-Cl, all the other four isomers α-Cl, γ-Cl, δ-Cl and ε-Cl are C2 symmetrical. Otherwise, a good agreement was found between experimental and the calculated geometry and NMR data. Moreover, Lanl2DZ effective core potential basis set provides good chemical shifts and geometric properties. Furthermore, the prediction of the frontier orbitals (Highest Occupied Molecular Orbital or HOMO and Lowest Unoc-cupied Molecular Orbital or LUMO) shows that the most active isomer suita-ble for electronic reactions is admitted to be δ-Cl. Besides, the NBO analysis indicates that the Ru-N is formed by the electron delocalization of lone pair atomic orbital of N2 and Npy to Ru. Also, the strongest interactions between LP(N) with LP*(Ru) and LP(Cl) with LP*(Ru) stabilize the molecular struc-ture. In addition, NBO shows that the five d orbitals of Ru in the complex are organized so that there is no order of priority from one complex to another. Therefore, the transition LP(Ru) → π*(N1 = N2) corresponding to Metal to Li-gand Charge Transfer (MLCT) is in reality no more than d → π*. Besides, TDDFT prediction in chloroform solvent reveals that all the five isomerics complexes absorb in the visible region as well as efficient photosensitizers. What’s more, δ-RuCl2(dazpy)2 can potentially act as the excellent sensitizer with a large band of absorption in visible region and a small excited energy. This study can help design and find out the ability or properties of the com-plex to behave as sensitizer or potential cancer drugs. 展开更多
关键词 Azopyridine DFT NBO PSEUDO-POTENTIAL Ru(II) Complexes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部