AIM: To determine if the observed paracellular sucrose leak in Barrett's esophagus patients is due to their pro- ton pump inhibitor (PPI) use. METHODS: The in vivo sucrose permeability test was administered to he...AIM: To determine if the observed paracellular sucrose leak in Barrett's esophagus patients is due to their pro- ton pump inhibitor (PPI) use. METHODS: The in vivo sucrose permeability test was administered to healthy controls, to Barrett's patients and to non-Barrett's patients on continuous PPI thera- py. Degree of leak was tested for correlation with pres- ence of Barrett's, use of PPIs, and length of Barrett's segment and duration of PPI use. RESULTS: Barrett's patients manifested a near 3-fold greater, upper gastrointestinal sucrose leak than healthy controls. A decrease of sucrose leak was ob- served in Barrett's patients who ceased PPI use for 7 d.Although initial introduction of PPI use (in a PPI-na'ive population) results in dramatic increase in sucrose leak, long-term, continuous PPI use manifested a slow spon- taneous decline in leak. The sucrose leak observed in Barrett's patients showed no correlation to the amount of Barrett's tissue present in the esophagus. CONCLUSION: Although future research is needed to determine the degree of paracellular leak in actual Barrett's mucosa, the relatively high degree of leak ob- served with in vivo sucrose permeability measurement of Barrett's patients reflects their PPI use and not their Barrett's tissue perse.展开更多
AIM:To evaluate the presence of Na+-dependent, active, sugar transport in Barrett's epithelia as an intestinal biomarker, based on the well-documented, morphological intestinal phenotype of Barrett's esophagus...AIM:To evaluate the presence of Na+-dependent, active, sugar transport in Barrett's epithelia as an intestinal biomarker, based on the well-documented, morphological intestinal phenotype of Barrett's esophagus (BE). METHODS: We examined uptake of the nonmeta- bolizable glucose analogue, alpha-methyl-D-glucoside (AMG), a substrate for the entire sodium glucose cotransporter (SGLT) family of transport proteins. During upper endoscopy, patients with BE or with uncomplicated gastroesophageal reflux disease (GERD) allowed for duodenal, gastric fundic, and esophageal mucosal biopsies to be taken. Biopsies were incubated in bicarbonate-buffered saline (KRB) containing 0.1 mmol/L 14C-AMG for 60 min at 20℃. Characterized by abundant SGLT, duodenum served as a positive control while gastric fundus and normal esophagus, known to lack SGLT, served as negative controls. RESULTS: Duodenal biopsies accumulated 249.84 ± 35.49 (SEM) picomoles AMG/μg DNA (n = 12), gastric fundus biopsies 36.20 ± 6.62 (n = 12), normal esophagus 12.10 ± 0.59 (n = 3) and Barrett's metaplasia 29.79 ± 5.77 (n = 8). There was a statistical difference (P < 0.01) between biopsies from duodenum and each other biopsy site but there was no statistically significant difference between normal esophagus and BE biopsies. 0.5 mmol/L phlorizin (PZ) inhibited AMG uptake into duodenal mucosa by over 89%, but had nosignificant effect on AMG uptake into gastric fundus, normal esophagus, or Barrett's tissue. In the absence of Na+ (all Na+ salts replaced by Li+ salts), AMG uptake in duodenum was decreased by over 90%, while uptake into gastric, esophageal or Barrett's tissue was statistically unaffected. CONCLUSION: Despite the intestinal enterocyte phenotype of BE, Na+-dependent, sugar transport activity is not present in these cells.展开更多
基金Supported by Sharpe-Strumia Research Foundation of the Bryn Mawr Hospital
文摘AIM: To determine if the observed paracellular sucrose leak in Barrett's esophagus patients is due to their pro- ton pump inhibitor (PPI) use. METHODS: The in vivo sucrose permeability test was administered to healthy controls, to Barrett's patients and to non-Barrett's patients on continuous PPI thera- py. Degree of leak was tested for correlation with pres- ence of Barrett's, use of PPIs, and length of Barrett's segment and duration of PPI use. RESULTS: Barrett's patients manifested a near 3-fold greater, upper gastrointestinal sucrose leak than healthy controls. A decrease of sucrose leak was ob- served in Barrett's patients who ceased PPI use for 7 d.Although initial introduction of PPI use (in a PPI-na'ive population) results in dramatic increase in sucrose leak, long-term, continuous PPI use manifested a slow spon- taneous decline in leak. The sucrose leak observed in Barrett's patients showed no correlation to the amount of Barrett's tissue present in the esophagus. CONCLUSION: Although future research is needed to determine the degree of paracellular leak in actual Barrett's mucosa, the relatively high degree of leak ob- served with in vivo sucrose permeability measurement of Barrett's patients reflects their PPI use and not their Barrett's tissue perse.
基金The Oncologic Foundation of Buffalo, the Sharpe-Strumia fund, and the Pennsylvania Department of Health
文摘AIM:To evaluate the presence of Na+-dependent, active, sugar transport in Barrett's epithelia as an intestinal biomarker, based on the well-documented, morphological intestinal phenotype of Barrett's esophagus (BE). METHODS: We examined uptake of the nonmeta- bolizable glucose analogue, alpha-methyl-D-glucoside (AMG), a substrate for the entire sodium glucose cotransporter (SGLT) family of transport proteins. During upper endoscopy, patients with BE or with uncomplicated gastroesophageal reflux disease (GERD) allowed for duodenal, gastric fundic, and esophageal mucosal biopsies to be taken. Biopsies were incubated in bicarbonate-buffered saline (KRB) containing 0.1 mmol/L 14C-AMG for 60 min at 20℃. Characterized by abundant SGLT, duodenum served as a positive control while gastric fundus and normal esophagus, known to lack SGLT, served as negative controls. RESULTS: Duodenal biopsies accumulated 249.84 ± 35.49 (SEM) picomoles AMG/μg DNA (n = 12), gastric fundus biopsies 36.20 ± 6.62 (n = 12), normal esophagus 12.10 ± 0.59 (n = 3) and Barrett's metaplasia 29.79 ± 5.77 (n = 8). There was a statistical difference (P < 0.01) between biopsies from duodenum and each other biopsy site but there was no statistically significant difference between normal esophagus and BE biopsies. 0.5 mmol/L phlorizin (PZ) inhibited AMG uptake into duodenal mucosa by over 89%, but had nosignificant effect on AMG uptake into gastric fundus, normal esophagus, or Barrett's tissue. In the absence of Na+ (all Na+ salts replaced by Li+ salts), AMG uptake in duodenum was decreased by over 90%, while uptake into gastric, esophageal or Barrett's tissue was statistically unaffected. CONCLUSION: Despite the intestinal enterocyte phenotype of BE, Na+-dependent, sugar transport activity is not present in these cells.