The study deals with physical modeling of a typical building frame resting on a pile group embedded in cohesive soil mass using complete three-dimensional finite element analysis. The elements of the superstructure fr...The study deals with physical modeling of a typical building frame resting on a pile group embedded in cohesive soil mass using complete three-dimensional finite element analysis. The elements of the superstructure frame and that of the pile foundation are discretized using twenty node isoparametric continuum elements. The interface between the pile and pile cap is idealized using sixteen node isoparametric surface elements. The more improved finite element mesh is used for modeling soil element as compared to the one used in the study reported in the literature. The soil elements are discretized using eight node, nine node and twelve node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in elastic state at all the time. The interaction analysis is carried out using sub-structure approach to attempt a parametric study. The effect of the parameter such as spacing between the piles in a group and diameter of pile is evaluated on the response of superstructure. The response includes the displacement at the top of the frame. The effect of the soil-structure interaction is observed to be significant for the type of foundation and soil considered in the present study.展开更多
文摘The study deals with physical modeling of a typical building frame resting on a pile group embedded in cohesive soil mass using complete three-dimensional finite element analysis. The elements of the superstructure frame and that of the pile foundation are discretized using twenty node isoparametric continuum elements. The interface between the pile and pile cap is idealized using sixteen node isoparametric surface elements. The more improved finite element mesh is used for modeling soil element as compared to the one used in the study reported in the literature. The soil elements are discretized using eight node, nine node and twelve node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in elastic state at all the time. The interaction analysis is carried out using sub-structure approach to attempt a parametric study. The effect of the parameter such as spacing between the piles in a group and diameter of pile is evaluated on the response of superstructure. The response includes the displacement at the top of the frame. The effect of the soil-structure interaction is observed to be significant for the type of foundation and soil considered in the present study.