期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Photoanode Activity of ZnO Nanotube Based Dye-Sensitized Solar Cells 被引量:4
1
作者 R. Ranjusha p. lekha +2 位作者 K.R.V. Subramanian V. Nair Shantikumar A. Balakrishnan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第11期961-966,共6页
Vertical ZnO nanotube (ZNT) arrays were synthesized onto an indium doped tin oxide (ITO) glass substrate by a simple electrochemical deposition technique followed by a selective etching process. Scanning electron ... Vertical ZnO nanotube (ZNT) arrays were synthesized onto an indium doped tin oxide (ITO) glass substrate by a simple electrochemical deposition technique followed by a selective etching process. Scanning electron microscopy (SEM) showed formation of well-faceted hexagonal ZNT arrays spreading uniformly over a large area. X-ray diffraction (XRD) of ZNT layer showed substantially higher intensity for the (0002) diffraction peak, indicating that the ZnO crystallites were well aligned with their c-axis. Profilometer measurements of the ZNT layer showed an average thickness of -7 μm. Diameter size distribution (DSD) analysis showed that ZNTs exhibited a narrow diameter size distribution in the range of 65-120 nm and centered at -75 nm. The photoluminescence (PL) spectrum measurement showed violet and blue luminescence peaks that were centered at 410 and 480 nm, respectively, indicating the presence of internal defects. Ultra-violet (UV) spectroscopy showed major absorbance peak at ,-348 nm, exhibiting an increase in energy gap value of 3.4 eV. By employing the formed ZNTs as the photo-anode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.01% was achieved with a fill factor of 54%. Quantum efficiency studies showed the maximum of incident photon-to-electron conversion efficiency in a visible region located at 590-550 nm range. 展开更多
关键词 ZnO nanotubes Indium doped tin oxide (ITO) glass Photoluminescence spectra Electrochemical deposition Quantum efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部