期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level
1
作者 K.Burdonov A.Fazzini +45 位作者 V.Lelasseux J.Albrecht p.Antici Y.Ayoul A.Beluze D.Cavanna T.Ceccotti M.Chabanis A.Chaleil S.N.Chen Z.Chen F.Consoli M.Cuciuc X.Davoine J.p.Delaneau E.d’Humieres J.-L.Dubois C.Evrard E.Filippov A.Freneaux p.Forestier-Colleoni L.Gremillet V.Horny L.Lancia L.Lecherbourg N.Lebas A.Leblanc W.Ma L.Martin F.Negoita J.-L.paillard D.papadopoulos F.perez S.pikuz G.Qi F.Quere L.Ranc p.-a.soderstrom M.Sciscio S.Sun S.Vallieres p.Wang W.Yao F.Mathieu p.Audebert J.Fuchs 《Matter and Radiation at Extremes》 SCIE CAS CSCD 2021年第6期12-25,共14页
We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility(located in Saclay,France),which was performed with the first available laser beam(F2),scaled to a no... We present the results of the first commissioning phase of the short-focal-length area of the Apollon laser facility(located in Saclay,France),which was performed with the first available laser beam(F2),scaled to a nominal power of 1 PW.Under the conditions that were tested,this beam delivered on-target pulses of 10 J average energy and 24 fs duration.Several diagnostics were fielded to assess the performance of the facility.The on-target focal spot and its spatial stability,the temporal intensity profile prior to the main pulse,and the resulting density gradient formed at the irradiated side of solid targets have been thoroughly characterized,with the goal of helping users design future experiments.Emissions of energetic electrons,ions,and electromagnetic radiation were recorded,showing good laser-to-target coupling efficiency and an overall performance comparable to that of similar international facilities.This will be followed in 2022 by a further commissioning stage at the multipetawatt level. 展开更多
关键词 performance beam NOMINAL
下载PDF
Current status and highlights of the ELI-NP research program 被引量:2
2
作者 K.A.Tanaka K.M.Spohr +25 位作者 D.L.Balabanski S.Balascuta L.Capponi M.O.Cernaianu M.Cuciuc A.Cucoanes I.Dancus A.Dhal B.Diaconescu D.Doria p.Ghenuche D.G.Ghita S.Kisyov V.Nastasa J.F.Ong F.Rotaru D.Sangwan p.-a.soderstrom D.Stutman G.Suliman O.Tesileanu L.Tudor N.Tsoneva C.A.Ur D.Ursescu N.V.Zamfir 《Matter and Radiation at Extremes》 SCIE CAS 2020年第2期2-25,共24页
The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around V 850 million worth of structural funds in 2011–2012 by the ... The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around V 850 million worth of structural funds in 2011–2012 by the European Commission for the installation of Extreme Light Infrastructure(ELI).The ELI project consists of three pillars being built in the Czech Republic,Hungary,and Romania.This challenging proposal is based on recent technical progress allowing ultraintense laser fields in which intensities will soon be reaching as high as I0∼1023Wcm−2.This tremendous technological advance has been brought about by the invention of chirped pulse amplification by Mourou and Strickland.Romania is hosting the ELI for Nuclear Physics(ELI-NP)pillar in M˘agurele near Bucharest.The new facility,currently under construction,is intended to serve the broad national,European,and international scientific community.Its mission covers scientific research at the frontier of knowledge involving two domains.The first is laser-driven experiments related to NP,strong-field quantum electrodynamics,and associated vacuum effects.The second research domain is based on the establishment of a Compton-backscattering-based,high-brilliance,and intenseγbeam with Eγ≲19.5 MeV,which represents a merger between laser and accelerator technology.This system will allow the investigation of the nuclear structure of selected isotopes and nuclear reactions of relevance,for example,to astrophysics with hitherto unprecedented resolution and accuracy.In addition to fundamental themes,a large number of applications with significant societal impact will be developed.The implementation of the project started in January 2013 and is spearheaded by the ELI-NP/Horia Hulubei National Institute for Physics and Nuclear Engineering(IFIN-HH).Experiments will begin in early 2020. 展开更多
关键词 INTENSE FRONTIER APPROVAL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部