期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Double heterogeneous structures induced excellent strength-ductility synergy in Ni_(40)Co_(30)Cr_(20)Al_(5)Ti_(5)medium-entropy alloy
1
作者 A.X.Li X.S.Liu +7 位作者 R.Li S.B.Yu M.H.Jiang J.S.Zhang C.N.Che D.Huang p.f.yu G.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第14期176-188,共13页
The application of single-phase face-centered cubic(FCC)medium entropy alloys(MEAs)in the engi-neering industry is often hindered by the challenge of insufficient strength.In this study,a novel non-equiatomic ratio Ni... The application of single-phase face-centered cubic(FCC)medium entropy alloys(MEAs)in the engi-neering industry is often hindered by the challenge of insufficient strength.In this study,a novel non-equiatomic ratio Ni_(40)Co_(30)Cr_(20)Al_(5)Ti_(5)MEA was successfully fabricated.Through the well-designed mechan-ical heat treatment processing,we introduced a heterogeneous grain structure comprising 67.4%fine grain and 32.6%coarse grain.Additionally,heterogeneous size L12 phases consisting of 18.7%submicron precip-itates and 11.7%nano-sized precipitates,were incorporated into the alloy.Tensile tests conducted at room temperature revealed that the double heterogeneous structure alloy demonstrated remarkable strength–ductility synergy.It exhibited a yield strength of 1200 MPa,an ultimate tensile strength of 1560 MPa and a total elongation of 33.6%.The exceptional strength of the alloy can be primarily attributed to heteroge-neous deformation induced strengthening,grain boundary strengthening and precipitation strengthening.The excellent ductility is mainly attributed to the high-density stacking faults and Lomer–Cottrell locks.This study not only contributes to the clarification of the strengthening and deformation mechanism of double heterogeneous structure alloys but also provides an effective strategy for the development of high-performance alloys with high strength and ductility. 展开更多
关键词 Medium entropy alloy Double heterogeneous structure HDI strengthening Remarkable tensile properties
原文传递
Excellent strength-ductility combination in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)Ti_(4)Mo_(1)multi-principal element alloys by dual-morphology B2 precipitates strengthening 被引量:1
2
作者 X.S.Liu R.Li +11 位作者 X.F.Fan Q.Q.Liu X.Tong A.X.Li S.Xu H.Yang S.B.Yu M.H.Jiang C.Huo p.f.yu M.T.Dove G.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第3期60-66,共7页
Precipitation strengthening provides one of the most widely-used mechanisms for strengthen-ing multi-principal-element alloys(MPEAs).Here,we report dual-morphology B2 precipitates in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)... Precipitation strengthening provides one of the most widely-used mechanisms for strengthen-ing multi-principal-element alloys(MPEAs).Here,we report dual-morphology B2 precipitates in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)Ti_(4)Mo_(1)MPEA obtained by thermo-mechanical processing.Electron microscopy charac-terization reveals that the dual-morphology B2 precipitates are either recrystallized B2 particles formed at the grain boundaries or triple junctions with recrystallization process,or rod-like within the non-recrystallized FCC matrix.The dual-morphology B2 precipitates enhance the yield strength and ultimate tensile strength up to 1120 MPa and 1480 MPa,respectively.This work suggests the mechanical proper-ties of the alloy can be optimized by B2 precipitation strengthening to meet the needs of engineering applications. 展开更多
关键词 Multi-principal element alloys B2 precipitates Heterogeneous nucleation Precipitation strengthening
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部