期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A machine learning approach for accelerated design of magnesium alloys. Part A:Alloy data and property space 被引量:1
1
作者 M.Ghorbani M.Boley +1 位作者 p.n.h.nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3620-3633,共14页
Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more i... Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more importantly it does not harness all the data that exists in the field. In this work, a new approach is proposed that utilises data science and provides a detailed understanding of the data that exists in the field of Mg-alloy design to date. In this approach, first a consolidated alloy database that incorporates 916 datapoints was developed from the literature and experimental work. To analyse the characteristics of the database, alloying and thermomechanical processing effects on mechanical properties were explored via composition-process-property matrices. An unsupervised machine learning(ML) method of clustering was also implemented, using unlabelled data, with the aim of revealing potentially useful information for an alloy representation space of low dimensionality. In addition, the alloy database was correlated to thermodynamically stable secondary phases to further understand the relationships between microstructure and mechanical properties. This work not only introduces an invaluable open-source database, but it also provides, for the first-time data, insights that enable future accelerated digital Mg-alloy design. 展开更多
关键词 MAGNESIUM Alloy design Mg-alloy database Data analysis Data visualisation Unsupervised machine learning
下载PDF
A machine learning approach for accelerated design of magnesium alloys.Part B: Regression and property prediction
2
作者 M.Ghorbani M.Boley +1 位作者 p.n.h.nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4197-4205,共9页
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two... Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design. 展开更多
关键词 Magnesium alloys Digital alloy design Supervised machine learning Regression models Prediction performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部