The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. Dur...The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.展开更多
The infiuence of small calcium additions on the high-temperature mechanical behaviour in an extruded Mg-6Zn-l Y(wt.%)alloy reinforced by the I-phase has been investigated.Calcium promotes the formation of the intermet...The infiuence of small calcium additions on the high-temperature mechanical behaviour in an extruded Mg-6Zn-l Y(wt.%)alloy reinforced by the I-phase has been investigated.Calcium promotes the formation of the intermetallic Mg6Zn3Ca2 phase instead of 1-phase,which results in a noticeable improvement of the yield strength and ultimate tensile strength of the alloy above 100℃.The strength of the alloys was analysed taking into account the contribution due to the grain size,the crystallographic texture and the volume fraction and nature of second phase particles.In situ synchrotron radiation diffraction experiments have been used to evaluate the load partitioning between the magnesium matrix and the second phase particles(1-and MgeZgCa?phases)in both alloys.The load transfer from the magnesium matrix towards the MgeZihCa?phase is markedly more effective than that for the I-phase over the entire temperature range,especially at 200°C,temperature at which the reinforcement effect of the I-phase is null.展开更多
基金financial support of the Spanish Ministry of Economy and Competitiveness under project number MAT2016-78850-Rprovision of beamtime at the P07 beamline of the Petra Ⅲ synchrotron facility under the project I-20170054EC。
文摘The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.
基金The authors would like to acknowledge financial support of the Spanish Ministry of Science and Innovation under project number MAT2016-78850-RWe would like to acknowledge the expert support of A.Garcia,A.Tomas and M.Maier for assistance with SEM.The Deutches Elektronen-Synchrotron DESY is acknowledged for the provision of beamtime at the P07 beamline of the PETRA III synchrotron facility in the framework of proposal I-20170054EC.
文摘The infiuence of small calcium additions on the high-temperature mechanical behaviour in an extruded Mg-6Zn-l Y(wt.%)alloy reinforced by the I-phase has been investigated.Calcium promotes the formation of the intermetallic Mg6Zn3Ca2 phase instead of 1-phase,which results in a noticeable improvement of the yield strength and ultimate tensile strength of the alloy above 100℃.The strength of the alloys was analysed taking into account the contribution due to the grain size,the crystallographic texture and the volume fraction and nature of second phase particles.In situ synchrotron radiation diffraction experiments have been used to evaluate the load partitioning between the magnesium matrix and the second phase particles(1-and MgeZgCa?phases)in both alloys.The load transfer from the magnesium matrix towards the MgeZihCa?phase is markedly more effective than that for the I-phase over the entire temperature range,especially at 200°C,temperature at which the reinforcement effect of the I-phase is null.