期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Evidence for particle acceleration approaching PeV energies in the W51 complex
1
作者 LHAASO Collaboration Zhen Cao +287 位作者 F.Aharonian Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi W.Bian A.V.Bukevich Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen H.X.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang J.H.Fang K.Fang C.F.Feng H.Feng L.Feng S.H.Feng X.T.Feng Y.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han M.Hasan H.H.He H.N.He J.Y.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang I.Karpikov D.Kuleshov K.Kurinov B.B.Li C.M.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li Jian Li Jie Li K.Li S.D.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu D.B.Liu H.Liu H.D.Liu J.Liu J.L.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu Q.Luo Y.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov L.J.Ou P.Pattarakijwanich Z.Y.Pei J.C.Qi M.Y.Qi B.Q.Qiao J.J.Qin A.Raza D.Ruffolo A.Sáiz M.Saeed D.Semikoz L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu.V.Stenkin V.Stepanov Y.Su D.X.Sun Q.N.Sun X.N.Sun Z.B.Sun J.Takata P.H.T.Tam Q.W.Tang R.Tang Z.B.Tang W.W.Tian C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang Kai Wang Kai Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu Q.W.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia G.M.Xiang D.X.Xiao G.Xiao Y.L.Xin Y.Xing D.R.Xiong Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang C.Y.Yang F.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang W.X.Yang Y.H.Yao Z.G.Yao L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.F.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao X.H.Zhao F.Zheng W.J.Zhong B.Zhou H.Zhou J.N.Zhou M.Zhou p.zhou R.Zhou X.X.Zhou X.X.Zhou B.Y.Zhu C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu Y.C.Zou X.Zuo S.Celli 《Science Bulletin》 SCIE EI CAS CSCD 2024年第18期2833-2841,共9页
Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t... Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs. 展开更多
关键词 UHE c-ray Cosmic rays SNR W51C Star clusters
原文传递
Optimization of performance of the KM2A full array using the Crab Nebula
2
作者 曹臻 F.Aharonian +275 位作者 安琪 阿西克古 白云翔 包逸炜 D.Bastieri 毕效军 毕玉江 蔡金庭 曹晴 曹文羽 曹喆 常进 常劲帆 陈尚明 陈恩生 陈亮 陈林 陈龙 陈明君 陈玛丽 陈起辉 陈素弘 陈天禄 陈阳 程宁 程耀东 崔明阳 崔树旺 崔晓红 崔昱东 戴本忠 代洪亮 戴子高 单增罗布 D.della Volpe 董绪强 段凯凯 樊军辉 范一中 方军 方堃 冯存峰 封莉 冯少辉 丰晓婷 冯有亮 S.Gabici 高博 高川东 高林青 高启 高卫 高伟康 葛茂茂 耿利斯 G.Giacinti 龚光华 苟全补 顾旻皓 郭福来 郭晓磊 郭义庆 郭莹莹 韩毅昂 何会海 贺昊宁 何佳银 何新波何钰 M.Heller 贺远强 侯博文 侯超 侯贤 胡红波 胡铨 胡世聪 黄代绘 黄天奇 黄文俊 黄性涛 黄晓渊 黄勇 黄志成 季筱璐 贾焕玉 贾康 江琨 姜晓巍 姜泽军 金敏 康明铭 柯通 D.Kuleshov.K.Kurinov 李兵兵 李澄 李骢 李丹 李飞 李海波 李会财 李华阳 李军 李剑 李捷 李凯 李文龙 李文莲 李秀荣 李昕 李一卓 李哲 黎卓 梁恩维 梁云峰 林苏杰 刘冰 刘成 刘栋 刘虎 刘海东 刘佳 刘江来 刘金艳 刘茂元 柳若愚 刘四明 刘伟 刘怡 刘以农 鲁睿 罗晴 吕洪魁 马伯强 马玲玲 马欣华 毛基荣 闵振 W.Mitthumsiri 穆慧君 南云程 A.Neronov 区子维 庞彬宇 P.Pattarakijwanich 裴致远 齐孟尧 祁业情 乔冰强 秦家军 D.Ruffolo A.Sáiz D.Semikoz 邵澄宇 邵琅 O.Shchegolev 盛祥东 舒富文 宋慧超 Yu.V.Stenkin V.Stepanov 苏扬 孙秦宁 孙晓娜 孙志斌 谭柏轩 唐庆文 唐泽波 田文武 王超 王昌贝 王广威 王洪光 王惠惠 王建成 汪凯 王利苹 王玲玉 王培汉 王冉 王为 王祥高 王祥玉 王阳 王玉东 王岩谨 王忠海 王仲翔 王振 王铮 韦大明 魏俊杰 魏永健 文韬 吴超勇 吴含荣 武莎 吴雪峰 吴雨生 席邵强 夏捷 夏君集 项光漫 肖迪泫 肖刚 辛广广 辛玉良 邢祎 熊峥 徐东莲 徐仁峰 徐仁新 徐伟立 薛良 闫大海 颜景志 颜田 杨朝文 杨帆 杨冯帆 杨何文 杨佳盈 杨莉莉 杨明洁 杨睿智 杨深邦 姚玉华 姚志国 叶一锰 尹丽巧 尹娜 游晓浩 游智勇 于艳红 袁强 岳华 曾厚敦 曾婷轩 曾玮 查敏 张彬彬 张丰 张海明 张恒英 张建立 张丽霞 张力 张鹏飞 张佩佩 张瑞 张少博 张少如 张寿山 张潇 张笑鹏 张云峰 张毅 张勇 赵兵 赵静 赵雷 赵立志 赵世平 郑福 周斌 周浩 周佳能 周猛 周平 周荣 周勋秀 祝成光 祝凤荣 朱辉 朱科军 左雄 LHAASO Collaboration 《Chinese Physics C》 SCIE CAS CSCD 2024年第6期169-178,共10页
The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energy... The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments. 展开更多
关键词 Γ-RAY Crab Nebula SIGNIFICANCE
原文传递
Flux variations of cosmic ray air showers detected by LHAASO-KM2A during a thunderstorm on June 10,2021
3
作者 F.Aharonian 安琪 +270 位作者 阿西克古 白立新 白云翔 包逸炜 D.Bastieri 毕效军 毕玉江 蔡金庭 曹喆 曹臻 常进 常劲帆 陈恩生 陈良 陈亮 陈龙 陈明君 陈玛丽 陈素弘 陈松战 陈天禄 陈学健 陈阳 程皓麟 程宁 程耀东 崔树旺 崔晓红 崔昱东 戴本忠 代洪亮 戴子高 单增罗布 D.della Volpe 段凯凯 樊军辉 范一中 范志香 方军 方堃 冯存峰 封莉 冯少辉 丰晓婷 冯有亮 高博 高川东 高林青 高启 高卫 高伟康 葛茂茂 耿利斯 龚光华 苟全补 顾旻皓 郭福来 郭俊广 郭晓磊 郭义庆 郭莹莹 韩毅昂 何会海 贺昊宁 何思乐 何新波 何钰 M.Heller 贺远强 侯超 侯贤 胡红波 胡铨 胡森 胡世聪 呼晓军 黄代绘 黄文昊 黄性涛 黄晓渊 黄勇 黄志成 季筱璐 贾焕玉 贾康 江琨 姜泽军 金敏 康明铭 柯通 D.Kuleshov 李兵兵 李澄 李骢 李飞 李海波 李会财 李华阳 李军 李剑 李捷 李凯 李文龙 李秀荣 李昕 李新 李一卓 李哲 黎卓 梁恩维 梁云峰 林苏杰 刘冰 刘成 刘栋 刘虎 刘海东 刘佳 刘江来 刘佳松 刘金艳 刘茂元 柳若愚 刘四明 刘伟 刘怡 刘以农 龙文杰 鲁睿 罗晴 吕洪魁 马伯强 马玲玲 马欣华 毛基荣 A.Masood 闵振 W.Mitthumsiri 南云程 区子维 庞彬宇 P.Pattarakijwanich 裴致远 齐孟尧 祁业情 乔冰强 秦家军 D.Ruffolo A.Sáiz 邵澄宇 邵琅 O.Shchegolev 盛祥东 石京燕 宋慧超 Yu.V.Stenkin V.Stepanov 苏扬 孙秦宁 孙晓娜 孙志斌 谭柏轩 唐泽波 田文武 王博东 王超 王辉 王洪光 王建成 王界双 王利苹 王玲玉 王冉 王润娜 王为 王祥高 王祥玉 王阳 王玉东 王岩谨 王亚平 王忠海 王仲翔 王振 王铮 韦大明 魏俊杰 魏永健 文韬 吴超勇 吴含荣 武莎 吴雪峰 吴雨生 席邵强 夏捷 夏君集 项光漫 肖迪泫 肖刚 辛广广 辛玉良 邢祎 熊峥 徐东莲 徐仁新 薛良 闫大海 颜景志 杨朝文 杨冯帆 杨何文 杨佳盈 杨莉莉 杨明洁 杨睿智 杨深邦 姚玉华 姚志国 叶一锰 尹丽巧 尹娜 游晓浩 游智勇 于艳红 袁强 岳华 曾厚敦 曾婷轩 曾玮 曾宗康 查敏 翟徐徐 张彬彬 张丰 张海明 张恒英 张建立 张丽霞 张力 张路 张鹏飞 张佩佩 张瑞 张少博 张少如 张寿山 张潇 张笑鹏 张云峰 张月雷 张毅 张勇 赵兵 赵静 赵雷 赵立志 赵世平 郑福 郑应 周斌 周浩 周佳能 周平 周荣 周勋秀 祝成光 祝凤荣 朱辉 朱科军 左雄 《Chinese Physics C》 SCIE CAS CSCD 2023年第1期193-203,共11页
The Large High Altitude Air Shower Observatory(LHAASO)has three sub-arrays,KM2A,WCDA,and WFCTA.The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during a thunderstorm on June 10,202... The Large High Altitude Air Shower Observatory(LHAASO)has three sub-arrays,KM2A,WCDA,and WFCTA.The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during a thunderstorm on June 10,2021.The number of shower events that meet the trigger conditions increases significantly in atmospheric electric fields,with a maximum fractional increase of 20%.The variations in trigger rates(increases or decreases)were found to be strongly dependent on the primary zenith angle.The flux of secondary particles increased significantly,following a trend similar to that of shower events.To better understand the observed behavior,Monte Carlo simulations were performed with CORSIKA and G4KM2A(a code based on GEANT4).We found that the experimental data(in saturated negative fields)were in good agreement with the simulations,assuming the presence of a uniform electric field of-700 V/cm with a thickness of 1500 m in the atmosphere above the observation level.Due to the acceleration/deceleration by the atmospheric electric field,the number of secondary particles with energy above the detector threshold was modified,resulting in the changes in shower detection rate. 展开更多
关键词 THUNDERSTORM cosmic rays extensive air showers LHAASO-KM2A
原文传递
Observation of the Crab Nebula with LHAASO-KM2A−a performance study 被引量:10
4
作者 F.Aharonian Q.An +245 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai D.della Volpe B.D'Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou p.zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第2期518-530,共13页
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto... A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered. 展开更多
关键词 Γ-RAY Crab Nebula extensive air showers cosmic rays
原文传递
Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle 被引量:5
5
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D'Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi B.Q.Qiao D.Ruffolo V.Rulev A.Saiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou p.zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第8期166-181,共16页
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ... The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories. 展开更多
关键词 LHAASO-WCDA Crab Nebula angular resolution spectral energy distribution
原文传递
Geometrical reconstruction of fluorescence events observed by the LHAASO experiment 被引量:1
6
作者 F.Aharonian Q.An +258 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.DEtorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang J.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y..Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Saiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.F.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou p.zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2021年第4期416-425,共10页
The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent det... The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length. 展开更多
关键词 cosmic ray fluorescence telescope stereo observation geometrical reconstruction
原文传递
A dynamic range extension system for LHAASOWCDA-1
7
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chang B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D’Ettorre Piazzoli X.J.Dong J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huang W.H.Huang X.T.Huang Y.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wang X.Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.Zhang Y.Zhang Y.F.Zhang Y.L.Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou p.zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Radiation Detection Technology and Methods》 CSCD 2021年第4期520-530,共11页
Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 ... Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV,a dynamic range extension system(WCDA++)is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1.Method The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events,which is an important parameter for identifying the composition of primary particles.Result and Conclusion The system has been running for more than one year.In this paper,the details of the design and performance of WCDA++are presented. 展开更多
关键词 LHAASO-WCDA WCDA++ Water Cherenkov detector PERFORMANCE
原文传递
Prospects for a multi-TeV gamma-ray sky survey with the LHAASO water Cherenkov detector array
8
作者 F.Aharonian V.Alekseenko +212 位作者 Q.An Axikegu L.X.Bai Y.W.Bao D.Bastieri9 X.J.Bi H.Cai Zhe Cao Zhen Cao J.Chang J.F.Chang X.C.Chang S.P.Chao B.M.Chen J.Chen L.Chen L.Chen M.L.Chen M.J.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu B.D'Ettorre Piazzoli J.Fang J.H.Fan Y.Z.Fan C.F Feng L.Feng S.H.Feng Y.L.Feng B.Gao Q.Gao W.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He J.C.He M.Heller S.L.He Y.He C.Hou D.H.Huang Q.L.Huang W.H.Huang X.T.Huang H.B.Hu S.Hu H.Y.Jia K.Jiang F.Ji C.Jin X.L.Ji K.Levochkin E.W.Liang Y.F Liang Cheng Li Cong Li F.Li H.Li H.B.Li H.C.Li H.M.Li J.Li K.Li W.L.Li X.Li X.R.Li Y.Li Z.Li Z.Li B.Liu C.Liu D.Liu H.D.Liu H.Liu J.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma J.R.Mao A.Masood X.H.Ma W.Mitthumsiri T.Montaruli Y.C.Nan P.Pattarakijwanich Z.Y.Pei B.Q.Qiao M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Sheng J.R.Shi Y.Stenkin V.Stepanov Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian D.D.Volpe C.Wang H.Wang H.G.Wang J.C.Wang L.Y.Wang W.Wang W.Wang X.G.Wang X.Y.Wang X.J.Wang Y.D.Wang Y.J.Wang Y.N.Wang Y.P.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu G.M.Xiang G.Xiao G.G.Xin Y.Xing R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Q.Yuan Y.H.Yu Z.J.Jiang H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang P.F.Zhang P.P.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Yi Zhang Yong Zhang Y.F.g Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao F.Zheng Y.Zheng J.N.Zhou p.zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Chinese Physics C》 SCIE CAS CSCD 2020年第6期123-132,共10页
The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under con... The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN). 展开更多
关键词 TeVγ-ray astronomy observational prospect LHAASO-WCDA
原文传递
Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA
9
作者 F.Aharonian Q.An +257 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi H.Cai J.T.Cai Z.Cao Z.Cao J.Chang J.F.Chang X.C.Chan B.M.Chen J.Chen L.Chen L.Chen L.Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen X.L.Chen Y.Chen N.Chen Y.D.Chen S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu D.della Volpe B.D’Ettorre Piazzoli X.J.Don J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fan C.F.Feng L.Feng S.H.Fen Y.L.Feng B.Gao C.D.Gao Q.Gao W.Gao M.M.Ge L.S.Gen G.H.Gong Q.B.Gou M.H.Gu J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.C.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang Q.L.Huan W.H.Huang X.T.Huang Z.C.Huang F.Ji X.L.Ji H.Y.Jia K.Jiang Z.J.Jiang C.Jin D.Kuleshov K.Levochkin B.B.Li C.Li C.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li K.Li W.L.Li X.Li X.Li X.R.Li Y.Li Y.Z.Li Z.Li Z.Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.N.Liu Z.X.Liu W.J.Long R.Lu H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood W.Mitthumsiri T.Montaruli Y.C.Nan B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi D.Ruffolo V.Rulev A.Sáiz L.Shao O.Shchegolev X.D.Shen J.R.Shi H.C.Song Yu.V.Stenkin V.Stepanov Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wan C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wan R.N.Wang W.Wang W.Wang X.G.Wang X.J.Wan X.Y.Wang Y.D.Wan Y.J.Wan Y.P.Wang Z.Wang Z.Wang Z.H.Wang Z.X.Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu W.X.Wu X.F.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang G.Xiao H.B.Xiao G.G.Xin Y.L.Xin Y.Xing D.L.Xu R.X.Xu L.Xue D.H.Yan C.W.Yang F.F.Yang J.Y.Yang L.L.Yang M.J.Yan R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang J.W.Zhang L.Zhang L.Zhang L.X.Zhang P.F.Zhang P.P.Zhang R.Zhang S.R.Zhang S.S.Zhan X.Zhang X.P.Zhan Y.Zhan Y.Zhang Y.F.Zhang Y.L.Zhan B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou p.zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo The LHAASO Collaboration 《Radiation Detection Technology and Methods》 CSCD 2021年第4期531-541,共11页
Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Wat... Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Water Cherenkov Detector Array(WCDA),a sub-array of the Large High Altitude Air Shower Observatory(LHAASO),is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs.Method Nevertheless,the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector.To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation.Result The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV.The sensitivity of the WCDA for GRB detection with the new trigger method is estimated.The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT.The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example. 展开更多
关键词 LHAASO WCDA GRB
原文传递
Reconstruction of Cherenkov image bymultiple telescopes of LHAASO-WFCTA
10
作者 F.Aharonian Q.An +272 位作者 Axikegu L.X.Bai Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi J.T.Cai Zhe Cao Zhen Cao J.Chang J.F.Chang E.S.Chen Liang Chen Liang Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen H.L.Cheng N.Cheng Y.D.Cheng S.W.Cui X.H.Cui Y.D.Cui B.D’Ettorre Piazzoli B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu Ddella Volpe K.K.Duan J.H.Fan Y.Z.Fan Z.X.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng X.T.Feng Y.L.Feng B.Gao C.D.Gao L.Q.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.H.Gong Q.B.Gou M.H.Gu F.L.Guo J.G.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He S.L.He X.B.He Y.He M.Heller Y.K.Hor C.Hou X.Hou H.B.Hu Q.Hu S.Hu S.C.Hu X.J.Hu D.H.Huang W.H.Huang X.T.Huang X.Y.Huang Y.Huang Z.C.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang Z.J.Jiang M.Jin M.M.Kang T.Ke D.Kuleshov K.Levochkin B.B.Li Cheng Li Cong Li F.Li H.B.Li H.C.Li H.Y.Li J.Li Jian Li Jie Li K.Li WLLi XRLi Xin Li Xin Li YZLi Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.S.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu W.J.Long R.Lu Q.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao A.Masood Z.Min W.Mitthumsiri Y.C.Nan Z.W.Ou B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi Y.Q.Qi B.Q.Qiao J.J.Qin D.Ruffolo A.Sáiz C.Y.Shao L.Shao O.Shchegolev X.D.Sheng J.Y.Shi H.C.Song Yu.V.Stenkin V.Stepanov Y.Su Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Z.B.Tang W.W.Tian B.D.Wang C.Wang H.Wang H.G.Wang J.C.Wang J.S.Wang L.P.Wang L.Y.Wang R.Wang R.N.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Y.P.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang D.X.Xiao G.Xiao G.G.Xin Y.L.Xin Y.Xing Z.Xiong D.L.Xu R.X.Xu L.Xue D.H.Yan J.Z.Yan C.W.Yang F.F.Yang H.W.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng Z.K.Zeng M.Zha X.X.Zhai B.B.Zhang F.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang L.X.Zhang Li Zhang Lu Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zhang S.R.Zhang S.S.Zhang X.Zhang X.P.Zhang Y.F.Zhang Y.L.Zhang Yi Zhang Yong Zhang B.Zhao J.Zhao L.Zhao L.Z.Zhao S.P.Zhao F.Zheng Y.Zheng B.Zhou H.Zhou J.N.Zhou p.zhou R.Zhou X.X.Zhou C.G.Zhu F.R.Zhu H.Zhu K.J.Zhu X.Zuo 《Radiation Detection Technology and Methods》 CSCD 2022年第4期544-557,共14页
Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Fiel... Introduction One of main scientific goals of the Large High Altitude Air Shower Observatory(LHAASO)is to accurately measure the energy spectra of different cosmic ray compositions around the‘knee’region.The Wide Field-of-View(FoV)Cherenkov Telescope Array(WFCTA),which is one of the main detectors of LHAASO and has 18 telescopes,is built to achieve this goal.Multiple telescopes are put together and point to connected directions for a larger FoV.Method Telescopes are deployed spatially as close as possible,but due to their own size,the distance between two adjacent telescopes is about 10 m.Therefore,the Cherenkov lateral distribution and the parallax between the two telescopes should be considered in the event building process for images crossing over the boundaries of FoVs of the telescopes.An event building method for Cherenkov images measured by multiple telescopes of WFCTA is developed.The performance of the shower measurements using the combined images is evaluated by comparing with showers that are fully contained by a virtual telescope in simulation.Results and conclusion It is proved that the developed event building process can help to increase the FoV of WFCTA by 30%while maintaining the same reconstruction quality,compared to the separate telescope reconstruction method. 展开更多
关键词 METHOD DIRECTIONS CONCLUSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部