A reliability-growth test is often used to assess complex systems under development.Reliability-growth models are usually used to quantify the achievable reliability indices and predict the expected reliability values...A reliability-growth test is often used to assess complex systems under development.Reliability-growth models are usually used to quantify the achievable reliability indices and predict the expected reliability values.The Crow army-materiel-system-analysis-activity(Crow-AMSAA)projection model and the AMSAA maturity projection(AMPM)-Stein model are suitable for modelling delayed corrective strategies.The AMPM-Stein model,which involves more failure data and requires limited assumptions,is more robust than the Crow-AMSAA projection model.However,the rationality of the Stein factor introduced in the AMPM-Stein model has always been controversial.An AMPM-Stein extended projection model,derived from data regrouping based on similar failure mechanisms,is presented to alleviate the problem.The study demonstrated that the proposed model performed well,the prediction results were credible,and the robustness of the proposed model was examined.Furthermore,the Stein-shrinkage factors,which are derived from components with similar inherent failure mechanisms,are easier to understand and accept in the field of engineering.An example shows that the proposed model is more suitable and accurate than the Crow-AMSAA model and the AMPM-Stein model,by comparing the projection values based on the failure data of the previous phases with the actual values of the current phases.This study provides a technical basis for extensive applications of the proposed model.展开更多
基金National Science and Technology Major Project of China(No.2019ZX04006001)。
文摘A reliability-growth test is often used to assess complex systems under development.Reliability-growth models are usually used to quantify the achievable reliability indices and predict the expected reliability values.The Crow army-materiel-system-analysis-activity(Crow-AMSAA)projection model and the AMSAA maturity projection(AMPM)-Stein model are suitable for modelling delayed corrective strategies.The AMPM-Stein model,which involves more failure data and requires limited assumptions,is more robust than the Crow-AMSAA projection model.However,the rationality of the Stein factor introduced in the AMPM-Stein model has always been controversial.An AMPM-Stein extended projection model,derived from data regrouping based on similar failure mechanisms,is presented to alleviate the problem.The study demonstrated that the proposed model performed well,the prediction results were credible,and the robustness of the proposed model was examined.Furthermore,the Stein-shrinkage factors,which are derived from components with similar inherent failure mechanisms,are easier to understand and accept in the field of engineering.An example shows that the proposed model is more suitable and accurate than the Crow-AMSAA model and the AMPM-Stein model,by comparing the projection values based on the failure data of the previous phases with the actual values of the current phases.This study provides a technical basis for extensive applications of the proposed model.