为了探讨江西朱溪钨多金属矿床的成矿流体性质及演化特征,本文对不同成矿阶段的矿石矿物和脉石矿物开展了流体包裹体以及H-O同位素研究。流体包裹体显微测温结果显示,该矿床矽卡岩期矿物流体包裹体的均一温度范围为231~358℃,盐度范围为...为了探讨江西朱溪钨多金属矿床的成矿流体性质及演化特征,本文对不同成矿阶段的矿石矿物和脉石矿物开展了流体包裹体以及H-O同位素研究。流体包裹体显微测温结果显示,该矿床矽卡岩期矿物流体包裹体的均一温度范围为231~358℃,盐度范围为3.87%~5.86%NaCl eqv,氧化物期和石英硫化物期矿物流体包裹体温度范围分别为167~403℃和114~351℃,盐度范围分别为1.57%~6.45%NaCl eqv和0.88%~8.00%NaCl eqv。激光拉曼探针测试表明,朱溪钨矿床流体包裹体组分主要为H 2 O,此外还含有少量CH 4、N 2和C 2 H 4。石英H-O同位素结果显示,δD v-SMOW值变化范围为-53‰^-87‰,δ18 O H 2O值介于2.58‰~5.68‰。自成矿早期到晚期,该矿床总体呈现缓慢降温的演化过程,钨在进入流体相后很可能以钨杂酸的络合物形式迁移,含钨的流体与碳酸盐岩围岩发生反应而引发流体酸碱度的变化,或后期大气水的加入导致的温度降低可能是朱溪钨矿床中钨沉淀成矿的主要机制。展开更多
The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l...The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.展开更多
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in...A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda-Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA-ICP-MS U-Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261-230 Ma); the Middle to Late Triassic (c. 229-210 Ma); the Early to Middle Jurassic (c. 206-165 Ma); the Early Cretaceous (c. 138-110 Ma) and the Late Cretaceous (c. 103-75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda-Weixi magmatic belt, showing arc-like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda-Weixi and Yidun magmatic belts, also demonstrating volcanic-arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garze-Litang suture, showing the properties of syn-collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc-like and syn-collision-like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A-type granite features. These suggest that the co-collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co-collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda-Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within-plate magmatism in Yidun magmatic belt in late Cretaceous.展开更多
文摘为了探讨江西朱溪钨多金属矿床的成矿流体性质及演化特征,本文对不同成矿阶段的矿石矿物和脉石矿物开展了流体包裹体以及H-O同位素研究。流体包裹体显微测温结果显示,该矿床矽卡岩期矿物流体包裹体的均一温度范围为231~358℃,盐度范围为3.87%~5.86%NaCl eqv,氧化物期和石英硫化物期矿物流体包裹体温度范围分别为167~403℃和114~351℃,盐度范围分别为1.57%~6.45%NaCl eqv和0.88%~8.00%NaCl eqv。激光拉曼探针测试表明,朱溪钨矿床流体包裹体组分主要为H 2 O,此外还含有少量CH 4、N 2和C 2 H 4。石英H-O同位素结果显示,δD v-SMOW值变化范围为-53‰^-87‰,δ18 O H 2O值介于2.58‰~5.68‰。自成矿早期到晚期,该矿床总体呈现缓慢降温的演化过程,钨在进入流体相后很可能以钨杂酸的络合物形式迁移,含钨的流体与碳酸盐岩围岩发生反应而引发流体酸碱度的变化,或后期大气水的加入导致的温度降低可能是朱溪钨矿床中钨沉淀成矿的主要机制。
基金granted by the National Natural Science Foundation of China(grants No.41302067,41472067 and 41403043)the Fundamental Research Funds of Chinese Academy of Geological Sciences(grant No.YYWF201614 and 09 program of Institute of Geomechanics)IGCP/SIDA–600,and China Geological Survey(grant No.DD20160053)
文摘The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.
基金funded by the National Key Research and Development Program of China 'Deep Structure and Ore-forming Process of Main Mineralization system in Tibetan Orogen'(NO.2016YFC0600300)the National Basic Research Program of China(NO.2011CB403104)+1 种基金the China Geological Survey(NO.12120113037901)the National Nature Science Foundation of China (NO.41320104004)
文摘A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda-Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA-ICP-MS U-Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261-230 Ma); the Middle to Late Triassic (c. 229-210 Ma); the Early to Middle Jurassic (c. 206-165 Ma); the Early Cretaceous (c. 138-110 Ma) and the Late Cretaceous (c. 103-75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda-Weixi magmatic belt, showing arc-like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda-Weixi and Yidun magmatic belts, also demonstrating volcanic-arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garze-Litang suture, showing the properties of syn-collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc-like and syn-collision-like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A-type granite features. These suggest that the co-collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co-collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda-Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within-plate magmatism in Yidun magmatic belt in late Cretaceous.