Thin films of perovskite manganese oxide Lao.66Ca0.29K0.05MnO3(LCKMO) on Au/ITO(ITO=indium tin oxide) substrates were prepared by off-axis radio frequency magnetron sputtering and characterized by X-ray diffrac- t...Thin films of perovskite manganese oxide Lao.66Ca0.29K0.05MnO3(LCKMO) on Au/ITO(ITO=indium tin oxide) substrates were prepared by off-axis radio frequency magnetron sputtering and characterized by X-ray diffrac- tion(XRD), high-resolution transmission electron microscopy(HRTEM), and conductive atomic force microscopy (C-AFM) at room temperature. The thin films with thickness ranged from 100 nm to 300 nm basically show cubic structures with a=0.3886 nm, the same as that of the raw material used, but the structures are highly modulated. C-AFM results revealed that the atomic scale p-n junction feature of the thin films was the same as that of the single crystals. The preparation of the thin films thus further confirms the possibility of their application extending from micrometer-sized single crystals to macroscopic thin film.展开更多
Cu2O particles with different morphologies and scales were prepared sonochemically on the solid-liquid interface of CuCl and water, by adjusting the reaction factors. The products were characterized by powder X-ray di...Cu2O particles with different morphologies and scales were prepared sonochemically on the solid-liquid interface of CuCl and water, by adjusting the reaction factors. The products were characterized by powder X-ray diffraction(XRD) and scanning electron microscopy(SEM). The formation and morphology of Cu2O crystals were influenced by high-intensity ultrasound, reaction temperature, and addition of CuCl. The results indicate that micrometer Cu2O was crystallized in cubic and octahedral shapes, whereas, nanometer Cu2O was not produced in well-shaped crystals.展开更多
基金Supported by the National Natural Science Foundation of China(No.90922034)
文摘Thin films of perovskite manganese oxide Lao.66Ca0.29K0.05MnO3(LCKMO) on Au/ITO(ITO=indium tin oxide) substrates were prepared by off-axis radio frequency magnetron sputtering and characterized by X-ray diffrac- tion(XRD), high-resolution transmission electron microscopy(HRTEM), and conductive atomic force microscopy (C-AFM) at room temperature. The thin films with thickness ranged from 100 nm to 300 nm basically show cubic structures with a=0.3886 nm, the same as that of the raw material used, but the structures are highly modulated. C-AFM results revealed that the atomic scale p-n junction feature of the thin films was the same as that of the single crystals. The preparation of the thin films thus further confirms the possibility of their application extending from micrometer-sized single crystals to macroscopic thin film.
基金National Natural Science Foundation of China(Nos.20121103 and 20631010)National Hi-tech Re-search and Development Program of China(No.2006AA03Z410)
文摘Cu2O particles with different morphologies and scales were prepared sonochemically on the solid-liquid interface of CuCl and water, by adjusting the reaction factors. The products were characterized by powder X-ray diffraction(XRD) and scanning electron microscopy(SEM). The formation and morphology of Cu2O crystals were influenced by high-intensity ultrasound, reaction temperature, and addition of CuCl. The results indicate that micrometer Cu2O was crystallized in cubic and octahedral shapes, whereas, nanometer Cu2O was not produced in well-shaped crystals.