Based on the traditional numerical simulation and optimization algorithms,in combination with the layered injection and production"hard data"monitored at real time by automatic control technology,a systemati...Based on the traditional numerical simulation and optimization algorithms,in combination with the layered injection and production"hard data"monitored at real time by automatic control technology,a systematic approach for detailed water injection design using data-driven algorithms is proposed.First the data assimilation technology is used to match geological model parameters under the constraint of observed well dynamics;the flow relationships between injectors and producers in the block are calculated based on automatic identification method for layered injection-production flow relationship;multi-layer and multi-direction production splitting technique is used to calculate the liquid and oil production of producers in different layers and directions and obtain quantified indexes of water injection effect.Then,machine learning algorithms are applied to evaluate the effectiveness of water injection in different layers of wells and to perform the water injection direction adjustment.Finally,the particle swarm algorithm is used to optimize the detailed water injection plan and to make production predictions.This method and procedure make full use of the automation and intelligence of data-driven and machine learning algorithms.This method was used to match the data of a complex faulted reservoir in eastern China,achieving a fitting level of 85%.The cumulative oil production in the example block for 12 months after optimization is 8.2%higher than before.This method can help design detailed water injection program for mature oilfields.展开更多
Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. ...Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.展开更多
基金Supported by the Key Program of Petro China Exploration&Production Company(Grant No.kt2017-17-01-1 and kt2017-17-06-1)Consulting Project of Chinese Academy of Engineering(Grant No.2019-XZ-17)
文摘Based on the traditional numerical simulation and optimization algorithms,in combination with the layered injection and production"hard data"monitored at real time by automatic control technology,a systematic approach for detailed water injection design using data-driven algorithms is proposed.First the data assimilation technology is used to match geological model parameters under the constraint of observed well dynamics;the flow relationships between injectors and producers in the block are calculated based on automatic identification method for layered injection-production flow relationship;multi-layer and multi-direction production splitting technique is used to calculate the liquid and oil production of producers in different layers and directions and obtain quantified indexes of water injection effect.Then,machine learning algorithms are applied to evaluate the effectiveness of water injection in different layers of wells and to perform the water injection direction adjustment.Finally,the particle swarm algorithm is used to optimize the detailed water injection plan and to make production predictions.This method and procedure make full use of the automation and intelligence of data-driven and machine learning algorithms.This method was used to match the data of a complex faulted reservoir in eastern China,achieving a fitting level of 85%.The cumulative oil production in the example block for 12 months after optimization is 8.2%higher than before.This method can help design detailed water injection program for mature oilfields.
基金Supported by the PetroChina Science and Technology Project(2016B-4104)
文摘Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.