Various methods for precise orbit determination (POD) of low earth orbiters (LEO) are briefly intro-duced in this paper. Based on the software named SHORD-Ⅲ developed by our institute,sin-gle-difference (SD) and zero...Various methods for precise orbit determination (POD) of low earth orbiters (LEO) are briefly intro-duced in this paper. Based on the software named SHORD-Ⅲ developed by our institute,sin-gle-difference (SD) and zero-difference (ZD) dynamic POD based on LEO carrying an on-board GPS receiver is mainly discussed. The approaches are tested using real GRACE data (November 5―25,2002) and independently validated with Satellite Laser Ranging (SLR) measurements over the same 21 days. Comparisons with the scientific orbits provided by GFZ indicate that the SD POD RMS accuracy can achieve 5,10 and 6 cm in radial,along and cross the track,and the ZD POD RMS accuracy can achieve 4,8 and 4 cm in radial,along and cross the track. SLR validation shows that SD POD accuracy is better than 8 cm in distance,and ZD POD accuracy is better than 6 cm.展开更多
The joint US/French Jason-1 satellite altimeter mission, launched from the Vandenberg Air Force Base on December 7, 2001, continues the time series of centimeter-level ocean topography observations as the follow-on to...The joint US/French Jason-1 satellite altimeter mission, launched from the Vandenberg Air Force Base on December 7, 2001, continues the time series of centimeter-level ocean topography observations as the follow-on to the highly successful T/P radar altimeter satellite. Orbit error especially the radial orbit error is a major component in the overall budget of all altimeter satellite missions, in order to continue the T/P standard of observations. Jason-1 has a radial orbit error budget requirement of 2.5 cm. In this work, two cycles (December 19, 2002 to January 7, 2003) of the Jason-1 on-board GPS data were processed using the zero-difference (ZD) dynamic precise orbit determination (POD) technique. The resulting Jason-1 orbit accuracy was assessed by comparison with the precise orbit ephemeris (POE) produced by JPL, orbit overlaps and SLR residuals. These evaluations indicate that the RMS radial accuracy is in the range of 1-2 cm.展开更多
文摘Various methods for precise orbit determination (POD) of low earth orbiters (LEO) are briefly intro-duced in this paper. Based on the software named SHORD-Ⅲ developed by our institute,sin-gle-difference (SD) and zero-difference (ZD) dynamic POD based on LEO carrying an on-board GPS receiver is mainly discussed. The approaches are tested using real GRACE data (November 5―25,2002) and independently validated with Satellite Laser Ranging (SLR) measurements over the same 21 days. Comparisons with the scientific orbits provided by GFZ indicate that the SD POD RMS accuracy can achieve 5,10 and 6 cm in radial,along and cross the track,and the ZD POD RMS accuracy can achieve 4,8 and 4 cm in radial,along and cross the track. SLR validation shows that SD POD accuracy is better than 8 cm in distance,and ZD POD accuracy is better than 6 cm.
基金Supported by the National Natural Science Foundation of China (Grant No. 40274006)High-tech Research and Development Program of China (Grant No. 2006AA12A107)Science & Technology Commission of Shanghai Municipality (Grant No. 06DZ22101)
文摘The joint US/French Jason-1 satellite altimeter mission, launched from the Vandenberg Air Force Base on December 7, 2001, continues the time series of centimeter-level ocean topography observations as the follow-on to the highly successful T/P radar altimeter satellite. Orbit error especially the radial orbit error is a major component in the overall budget of all altimeter satellite missions, in order to continue the T/P standard of observations. Jason-1 has a radial orbit error budget requirement of 2.5 cm. In this work, two cycles (December 19, 2002 to January 7, 2003) of the Jason-1 on-board GPS data were processed using the zero-difference (ZD) dynamic precise orbit determination (POD) technique. The resulting Jason-1 orbit accuracy was assessed by comparison with the precise orbit ephemeris (POE) produced by JPL, orbit overlaps and SLR residuals. These evaluations indicate that the RMS radial accuracy is in the range of 1-2 cm.