Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterb...Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterborne polyurethane(WPU)andβ-cyclodextrin(β-CD)have not been reported.Herein,a novel green method,ion condensation method,was developed in this study for the preparation of polymer nanosponge adsorbents for efficient removal of dyes from wastewater.Based on the principle of charge repulsion between nanoparticles to maintain emulsion stability,waterborne polyurethane/β-cyclodextrin composite nanosponges(WPU-x,y)were prepared by coagulating the emulsions synthesized from 2,2-dimethylolpropionic acid,polypropylene glycol and hexamethylene diisocyanate as raw materials in a mixture of hydrochloric acid and anhydrous ethanol.The structure and appearance of WPU-x,y were characterized by attenuated total reflectance Fourier transform infrared spectroscopy,thermal gravimetric analyzer,scanning electron microscope and mercury intrusion porosimetry.The adsorption capacity of WPU-x,y was tested by parameters such as cross-linking degree,β-CD dosage,contact time,initial dye concentration and p H value.The study found that WPU-4,4.62 had the best adsorption effect on methylene blue(MB),the maximum removal rate was 93.42%,and the maximum adsorption capacity was 136.03 mg·g^(-1).Moreover,the Sips isotherm and pseudo-second-order-model were suitable for MB adsorption.Therefore,this study provides some perspectives for the fabrication of nanosponge adsorbents.展开更多
Hesperidin is a dihydroflavonoids, accounting for more than 50% of the total flavonoids in Citri Reticulatae Pericarpium(CRP) of traditional Chinese medicine. It is an effective antioxidant and free radical scavenger ...Hesperidin is a dihydroflavonoids, accounting for more than 50% of the total flavonoids in Citri Reticulatae Pericarpium(CRP) of traditional Chinese medicine. It is an effective antioxidant and free radical scavenger that has anti-inflammatory, antiviral and hypoglycemic properties.The latest studies reported that hesperidin has a potential for novel coronavirus resistance. However, little is known about the synthesis regulation and accumulation site of hesperidin in plants. In this study, hesperidin synthase gene Crc1,6RhaT was cloned, and the protein can be completely transformed flavanone-7-O-glucoside into hesperidin in vitro and in vivo. Studies on biological characteristics of ovary walls and exocarps showed that the relative expression levels of the Crc1,6RhaT gene and protein decreased gradually with the development of citrus fruits, and the relative content of hesperidin firstly increased, then sequentially decreased. In situ hybridization results further revealed that Crc1,6RhaT transcription was mainly concentrated in the secretory cavity cells, which are revealed to be the site of flavonoid synthesis.Immunocytochemistry localization results showed that the Crc1,6RhaT was mainly located in the endoplasmic reticulum, nucleus and vacuole of secretory cells. We inferred that the Crc1,6RhaT was synthesized in the endoplasmic reticulum, then was transported into the vacuoles through enlarged vesicles at the end of the endoplasmic reticulum. Our results not only revealed that Crc1,6RhaT may be involved in the synthesis of hesperidin of the main bioactive substance in the medicinal plant Citrus reticulata ‘Chachi' fruit, but also provided novel insights into the main subcellular sites of hesperidin biosynthesis in vacuoles.展开更多
A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and envir...A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and environmentally friendly waterborne polyurethane as the matrix material and humic acid,a biomass material,as the functional material.The newly synthesized adsorbents were characterized by infrared spectroscopy,scanning electron microscopy,specific surface area,and thermogravimetric.The effects of contact time(0-8 h),starting concentration(10-100 mg·L^(-1)),pH(3-11),solution temperature(30-60℃),and coexisting ions(Ca2+,Na+,K+,Mg2+)on the performance were investigated.Pseudo-first-order,pseudo-second-order,elovich,and intra-particle diffusion models were used to analyze the adsorption kinetics;the Langmuir,Freundlich,Temkin,and Dubin-Radushkovich adsorption isotherms were evaluated;and the adsorption behavior of the adsorbent materials was found to be more appropriate for the pseudo-second-order model for chemical pollutant removal than the Langmuir model,which depends on monolayer adsorption.WPU-HA2-3 stood out with a maximum adsorption capacity of 813.0081 mg·g^(-1) fitted to the pseudo-second-order and 309.2832 mg·g^(-1) fitted to the Langmuir model,showing superior adsorption performance and regenerability.展开更多
基金supported by the National Natural Science Foundation of China(21704047,21801145)the Natural Science Foundation of Shandong Province(ZR2017BB078,ZR2021QE137)+1 种基金the Foundation(ZZ20190407)of State Key Laboratory of Biobased Material and Green Papermakingthe Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020230)。
文摘Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterborne polyurethane(WPU)andβ-cyclodextrin(β-CD)have not been reported.Herein,a novel green method,ion condensation method,was developed in this study for the preparation of polymer nanosponge adsorbents for efficient removal of dyes from wastewater.Based on the principle of charge repulsion between nanoparticles to maintain emulsion stability,waterborne polyurethane/β-cyclodextrin composite nanosponges(WPU-x,y)were prepared by coagulating the emulsions synthesized from 2,2-dimethylolpropionic acid,polypropylene glycol and hexamethylene diisocyanate as raw materials in a mixture of hydrochloric acid and anhydrous ethanol.The structure and appearance of WPU-x,y were characterized by attenuated total reflectance Fourier transform infrared spectroscopy,thermal gravimetric analyzer,scanning electron microscope and mercury intrusion porosimetry.The adsorption capacity of WPU-x,y was tested by parameters such as cross-linking degree,β-CD dosage,contact time,initial dye concentration and p H value.The study found that WPU-4,4.62 had the best adsorption effect on methylene blue(MB),the maximum removal rate was 93.42%,and the maximum adsorption capacity was 136.03 mg·g^(-1).Moreover,the Sips isotherm and pseudo-second-order-model were suitable for MB adsorption.Therefore,this study provides some perspectives for the fabrication of nanosponge adsorbents.
基金supported by the National Natural Science Foundation of China (Grant No.32270381)Natural Science Foundation of Guangdong (Grant No.2022A1515011086)+2 种基金Key Realm R&D Program of Guangdong Province (Grant No.2020B020221001)Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (Grant No.2019KJ125)Research Fund of Maoming Branch,Guangdong Laboratory for Lingnan Modern Agriculture (Grant No.2022KF009)。
文摘Hesperidin is a dihydroflavonoids, accounting for more than 50% of the total flavonoids in Citri Reticulatae Pericarpium(CRP) of traditional Chinese medicine. It is an effective antioxidant and free radical scavenger that has anti-inflammatory, antiviral and hypoglycemic properties.The latest studies reported that hesperidin has a potential for novel coronavirus resistance. However, little is known about the synthesis regulation and accumulation site of hesperidin in plants. In this study, hesperidin synthase gene Crc1,6RhaT was cloned, and the protein can be completely transformed flavanone-7-O-glucoside into hesperidin in vitro and in vivo. Studies on biological characteristics of ovary walls and exocarps showed that the relative expression levels of the Crc1,6RhaT gene and protein decreased gradually with the development of citrus fruits, and the relative content of hesperidin firstly increased, then sequentially decreased. In situ hybridization results further revealed that Crc1,6RhaT transcription was mainly concentrated in the secretory cavity cells, which are revealed to be the site of flavonoid synthesis.Immunocytochemistry localization results showed that the Crc1,6RhaT was mainly located in the endoplasmic reticulum, nucleus and vacuole of secretory cells. We inferred that the Crc1,6RhaT was synthesized in the endoplasmic reticulum, then was transported into the vacuoles through enlarged vesicles at the end of the endoplasmic reticulum. Our results not only revealed that Crc1,6RhaT may be involved in the synthesis of hesperidin of the main bioactive substance in the medicinal plant Citrus reticulata ‘Chachi' fruit, but also provided novel insights into the main subcellular sites of hesperidin biosynthesis in vacuoles.
基金supported by the National Natural Science Foundation of China(21704047)the Natural Science Foundation of Shandong Province(ZR2017BB078,ZR2021QE137)+1 种基金the Foundation of State Key Laboratory of Biobased Material and Green Papermaking(ZZ20190407)the Major scientific and technological innovation projects of Shandong Province(2019JZZY020230).
文摘A series of adsorbent materials(WPU-HAx-y)with a three-dimensional porous structure,green sustainability,and excellent performance were prepared and evaluated for the removal of methylene blue using nontoxic and environmentally friendly waterborne polyurethane as the matrix material and humic acid,a biomass material,as the functional material.The newly synthesized adsorbents were characterized by infrared spectroscopy,scanning electron microscopy,specific surface area,and thermogravimetric.The effects of contact time(0-8 h),starting concentration(10-100 mg·L^(-1)),pH(3-11),solution temperature(30-60℃),and coexisting ions(Ca2+,Na+,K+,Mg2+)on the performance were investigated.Pseudo-first-order,pseudo-second-order,elovich,and intra-particle diffusion models were used to analyze the adsorption kinetics;the Langmuir,Freundlich,Temkin,and Dubin-Radushkovich adsorption isotherms were evaluated;and the adsorption behavior of the adsorbent materials was found to be more appropriate for the pseudo-second-order model for chemical pollutant removal than the Langmuir model,which depends on monolayer adsorption.WPU-HA2-3 stood out with a maximum adsorption capacity of 813.0081 mg·g^(-1) fitted to the pseudo-second-order and 309.2832 mg·g^(-1) fitted to the Langmuir model,showing superior adsorption performance and regenerability.