期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Foliations on the tangent bundle of Finsler manifolds 被引量:1
1
作者 peyghan esmaei TAYEBI Akbar ZHONG ChunPing 《Science China Mathematics》 SCIE 2012年第3期647-662,共16页
Let M be a smooth manifold with Finsler metric F,and let T M be the slit tangent bundle of M with a generalized Riemannian metric G,which is induced by F.In this paper,we prove that (i) (M,F) is a Landsberg manifold i... Let M be a smooth manifold with Finsler metric F,and let T M be the slit tangent bundle of M with a generalized Riemannian metric G,which is induced by F.In this paper,we prove that (i) (M,F) is a Landsberg manifold if and only if the vertical foliation F V is totally geodesic in (T M,G);(ii) letting a:= a(τ) be a positive function of τ=F 2 and k,c be two positive numbers such that c=2 k(1+a),then (M,F) is of constant curvature k if and only if the restriction of G on the c-indicatrix bundle IM (c) is bundle-like for the horizontal Liouville foliation on IM (c),if and only if the horizontal Liouville vector field is a Killing vector field on (IM (c),G),if and only if the curvature-angular form Λ of (M,F) satisfies Λ=1-a 2/R on IM (c). 展开更多
关键词 Finsler manifold g-natural metrics Riemannian foliation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部