基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分...基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分析不同试验方案模拟的雷达反射率、风场与热动力的时空演变和结构特征。结果表明:逐30 min循环同化的Exp3方案较未同化和非临近循环同化方案模拟效果有较好提升,表明循环同化和增加频次有效改善了初始场;UNRAVEL退模糊算法质控有效消除了速度模糊,退模糊处理雷达资料后循环同化方案(Exp4)对此次雷暴大风的雷达反射率和地面风场模拟结果有显著调整,其相应特征和演变趋势与观测基本一致,表明UNRAVEL退模糊质控后循环同化更好的改善了初始场;从热动力场结果来看,Exp4方案动热力结构改善较明显,上层辐散下层辐合,存在“冷—暖—冷”的热动力结构,伴随着强烈上升运动、北高南低的气压分布和强垂直风切变,有助于下沉气流将中高层的水平动量向近地面底层传递,从而激发此次雷暴大风。展开更多
Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of f...Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.展开更多
Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supp...Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.展开更多
Antimony selenide(Sb_(2)Se_(3))is a potential photovoltaic(PV)material for next-generation solar cells and has achieved great development in the last several years.The properties of Sb_(2)Se_(3)absorber and back conta...Antimony selenide(Sb_(2)Se_(3))is a potential photovoltaic(PV)material for next-generation solar cells and has achieved great development in the last several years.The properties of Sb_(2)Se_(3)absorber and back contact influence the PV performances of Sb_(2)Se_(3)solar cells.Hence,optimization of back contact characteristics and absorber orientation are crucial steps in raising the power conversion efficiency(PCE)of Sb_(2)Se_(3)solar cells.In this work,MoO2was introduced as an intermediate layer(IL)in Sb_(2)Se_(3)solar cells,and comparative investigations were conducted.The growth of(211)-oriented Sb_(2)Se_(3)with large grains was facilitated by introducing the MoO2IL with suitable thickness.The MoO2IL substantially lowered the back contact barrier and prevented the formation of voids at the back contact,which reduced the thickness of the MoSe2interface layer,inhibited carrier recombination,and minimized bulk and interfacial defects in devices.Subsequently,significant optimization enhanced the open-circuit voltage(VOC)of solar cells from 0.481 V to 0.487 V,short-circuit current density(JSC)from 23.81 m A/cm^(2)to 29.29 m A/cm^(2),and fill factor from 50.28%to 57.10%,which boosted the PCE from 5.75%to 8.14%.展开更多
文摘基于多普勒天气雷达资料、ERA5再分析资料与地面自动站观测资料,利用WRF(Weather Research and Forecasting)模式、雷达径向风质控及三维变分同化系统(GSI)循环同化对2021年4月30日江苏南通的一次雷暴大风过程进行数值模拟研究,对比分析不同试验方案模拟的雷达反射率、风场与热动力的时空演变和结构特征。结果表明:逐30 min循环同化的Exp3方案较未同化和非临近循环同化方案模拟效果有较好提升,表明循环同化和增加频次有效改善了初始场;UNRAVEL退模糊算法质控有效消除了速度模糊,退模糊处理雷达资料后循环同化方案(Exp4)对此次雷暴大风的雷达反射率和地面风场模拟结果有显著调整,其相应特征和演变趋势与观测基本一致,表明UNRAVEL退模糊质控后循环同化更好的改善了初始场;从热动力场结果来看,Exp4方案动热力结构改善较明显,上层辐散下层辐合,存在“冷—暖—冷”的热动力结构,伴随着强烈上升运动、北高南低的气压分布和强垂直风切变,有助于下沉气流将中高层的水平动量向近地面底层传递,从而激发此次雷暴大风。
基金supported by the National Natural Science Foundation of China(Grant Nos.62104156,62074102)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011256,2022A1515010979)China+1 种基金Science and Technology plan project of Shenzhen(Grant Nos.20220808165025003,20200812000347001)Chinasupported by the open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Guangxi University(Grant No.2022GXYSOF13)。
文摘Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.
基金National Natural Science Foundation of China,Grant/Award Number:62274112Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515010929Science and Technology Plan project of Shenzhen,Grant/Award Numbers:JCYJ20220531103601003,20220810154601001。
文摘Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3) thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3) flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3) and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.
基金supported by the National Natural Science Foundation of China(62074102)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010979)+1 种基金the Key Project of Department of Education of Guangdong Province(2018KZDXM059)the Science and Technology plan project of Shenzhen(20220808165025003)。
文摘Antimony selenide(Sb_(2)Se_(3))is a potential photovoltaic(PV)material for next-generation solar cells and has achieved great development in the last several years.The properties of Sb_(2)Se_(3)absorber and back contact influence the PV performances of Sb_(2)Se_(3)solar cells.Hence,optimization of back contact characteristics and absorber orientation are crucial steps in raising the power conversion efficiency(PCE)of Sb_(2)Se_(3)solar cells.In this work,MoO2was introduced as an intermediate layer(IL)in Sb_(2)Se_(3)solar cells,and comparative investigations were conducted.The growth of(211)-oriented Sb_(2)Se_(3)with large grains was facilitated by introducing the MoO2IL with suitable thickness.The MoO2IL substantially lowered the back contact barrier and prevented the formation of voids at the back contact,which reduced the thickness of the MoSe2interface layer,inhibited carrier recombination,and minimized bulk and interfacial defects in devices.Subsequently,significant optimization enhanced the open-circuit voltage(VOC)of solar cells from 0.481 V to 0.487 V,short-circuit current density(JSC)from 23.81 m A/cm^(2)to 29.29 m A/cm^(2),and fill factor from 50.28%to 57.10%,which boosted the PCE from 5.75%to 8.14%.