The formation of humins hampers the large-scale production of 5-hydroxymethylfurfural(HMF)in biorefinery.Here,a detailed reaction network of humin formation at the initial stage of fructose-to-HMF dehydration in water...The formation of humins hampers the large-scale production of 5-hydroxymethylfurfural(HMF)in biorefinery.Here,a detailed reaction network of humin formation at the initial stage of fructose-to-HMF dehydration in water is delineated by combined experimental,spectroscopic,and theoretical studies.Three bimolecular reaction pathways to build up soluble humins are demonstrated.That is,the intermolecular etherification of β-furanose at room temperature initiates the C12 path,whereas the C-C cleavage of a-furanose at 130-150℃ leads to C11 path,and that of open-chain fructose at 180℃ to C11' path.The successive intramolecular dehydrations and condensations of the as-formed bimolecular intermediates lead to three types of soluble humins.We show that the C12 path could be restrained by using HCl or AlCl_(3) catalyst,and both the C12 and C110 paths could be effectively inhibited by adding THF as a co-solvent or accelerating heating rate via microwave heating.展开更多
High-efficient production of 5-hydroxymethylfurfural(HMF),a“sleeping giant”in sustainable chemistry,from cellulose depends significantly on the effective separation of cellulose from lignocellulosic biomass.Herein,w...High-efficient production of 5-hydroxymethylfurfural(HMF),a“sleeping giant”in sustainable chemistry,from cellulose depends significantly on the effective separation of cellulose from lignocellulosic biomass.Herein,we report the fractional separation of wheat straw cellulose(WSC)from wheat straw under solvothermal conditions using a mixed solvent of γ-valerolactone(GVL)and H_(2)O as the separating solvent,wherein the impacts of fractional separation parameters(solvent composition,temperature,and time)on removals of lignin and hemicellulose as well as purity and recovery of cellulose were studied by a Box-Behnken Design of response surface method.The optimization of the solvothermal parameters enabled an optimal fractional separation condition(V_(GVL):~60.0%,T:205℃,t:~1.7 h)that led to a higher purity(89.4%)and recovery(86.7%)of cellulose in WSC.A further correlation of the removals of lignin and hemicellulose as well as purity and recovery of cellulose with the yield of HMF excluded an independent influence of the above factors.Instead,a comprehensive contribution of high fractional separation efficiency(defined as the product of cellulose purity and recovery)and low crystallinity of WSC was found to improve the HMF yield.However,the heat-and freeze-dryings of WSC after the solvothermal separation were found to lower the HMF molar yield because it re-improved the crystallinity of WSC.A high HMF molar yield of 58.6%was achieved after reacting wet-WSC in a mixed solvent of 1,4-dioxane and H_(2)O at 180℃for 20 min,which was 1.5 fold higher than that from microcrystalline cellulose.This work highlights the importance of enhancing the fractional separation efficiency of cellulose from lignocellulosic biomass while avoiding the drying process for future HMF biorefinery.展开更多
In response to global carbon neutrality targets,there is an urgent need for large-scale,clean hydrogen production technologies to supplant fossil fuels and underpin the establishment of a‘hydrogen economy’.The prosp...In response to global carbon neutrality targets,there is an urgent need for large-scale,clean hydrogen production technologies to supplant fossil fuels and underpin the establishment of a‘hydrogen economy’.The prospect of large-scale on-site green hydrolysis of Mg-based materials for hydrogen production has attracted wide attention.Aiming at the problems of easy formation of inert oxide layer on its surface and the production of Mg(OH)_(2) to hinder the hydrolysis process,it is urgent to explore efficient,low-cost and green modification strategies.In this work,the green modification strategy for hydrolyzing hydrogen production of Mg-based materials was summarized,and the fast initial kinetics and high hydrogen production rate could be achieved by adjusting hydrolysis medium conditions and modifying Mg-based material.The significance of hydrolytic hydrogen production technology and device development for the realization of Mg-based hydrolytic hydrogen production was evaluated.Meanwhile,this work looks forward to the future direction of hydrogen production modification by hydrolysis of Mg-based alloy,and gradually optimizes the hydrolysis performance of industrial multi-component waste Mg alloy under the premise of green hydrogen production,and proposes the goal of efficient modification of waste Mg alloy,high-quality utilization of seawater,and low-cost and controllable hydrogen production process.展开更多
Extracellular membrane proteins are crucial for mediating cell attachment,recognition,and signal transduction in the testicular microenvironment,particularly germline stem cells.Cadherin 18(CDH18),a type Ⅱ classical ...Extracellular membrane proteins are crucial for mediating cell attachment,recognition,and signal transduction in the testicular microenvironment,particularly germline stem cells.Cadherin 18(CDH18),a type Ⅱ classical cadherin,is primarily expressed in the nervous and reproductive systems.Here,we investigated the expression of CDH18in neonatal porcine prospermatogonia(ProSGs)and murine spermatogonial stem cells(SSCs).Disruption of CDH18 expression did not adversely affect cell morphology,proliferation,self-renewal,or differentiation in cultured porcine ProSGs,but enhanced cell adhesion and prolonged cell maintenance.Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion.To further elucidate the function of CDH18 in germ cells,Cdh18 knockout mice were generated,which exhibited normal testicular morphology,histology,andspermatogenesis.Transcriptomic analysis showed increased expression of genes associated with adhesion,consistent with the observations in porcine ProSGs.The interaction of CDH18withβ-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency.Collectively,these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs.Understanding this regulatory mechanism provides significant insights into the testicular niche.展开更多
This study mainly investigated the regulatory effect of Rosa roxburghii Tratt fruit juice fermented by Lacticaseibacillus paracasei SR10-1(LAB-RRTJ)on modulating gut microbiota in dextran sulfate sodium(DSS)-induced u...This study mainly investigated the regulatory effect of Rosa roxburghii Tratt fruit juice fermented by Lacticaseibacillus paracasei SR10-1(LAB-RRTJ)on modulating gut microbiota in dextran sulfate sodium(DSS)-induced ulcerative colitis in mice.Compared to control group,DSS induction decreased body weight of mice,indexes of Shannon,Simpson,Chao1 and Faith_pd,and increased disease activity index(DAI)and levels of interleukin 1β(IL-1β),IL-6,tumor necrosis factorα(TNF-α)and interferon-γ(IFN-γ);And this induction also led to an increase in Proteobacteria,Verrucomicrobia and Actinobacteria at phylum level,harmful bacterial species richness at genus level,and relative richness of S.sciuri,Desulfovibrio C21_c20,R.gnavus and Akkermansia muciniphila at species level,and a decrease in Firmicutes at phylum level and relative richness of B.acidifaciens in mice.LAB-RRTJ increased body weight of mice with DSS induced ulcerative colitis(UC)and indexes of Shannon,Simpson,Chao1 and Faith_pd,reduced DAI and the content of four infl ammatory factors and improved gut microbiota imbalance in DSS induced UC mice.Besides,the number of operational taxonomic units(OTUs)increased,α-diversity andβ-diversity were restored and similar to those in mice in the control group after LAB-RRTJ treatment.Compared with the positive drug treatment group,LAB-RRTJ has a better effect on regulating gut microbiota diversity in colitis mice.Correlation analysis showed that infl ammatory factors were positively correlated with harmful bacteria and negatively correlated with beneficial bacteria which commonly found in some colitis mice.Taken together,our study demonstrated that LAB-RRTJ could alleviate DSS-induced colitis in mice through the modulation of infl ammatory cytokines and gut microbiota composition.展开更多
Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and a...Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance.展开更多
Layered rock mass of significant strength changes for adjacent layers is frequently observed in underground excavation,and dynamic loading is a prevalent scenario generated during excavation.In order to improve the dr...Layered rock mass of significant strength changes for adjacent layers is frequently observed in underground excavation,and dynamic loading is a prevalent scenario generated during excavation.In order to improve the driving efficiency and reduce engineering accidents,dynamic compression characteristics of this kind of rock mass should be understood.The dynamic properties of a layered composite rock mass are investigated through a series of rock tests and numerical simulations.The rock mass is artificially made of various proportions of sand,cement and water to control the distinct strength variations at various composite layers separated by parallel bedding planes.All rock specimens are prefabricated in a specially designed mould and then cut into 50 mm in diameter and 50 mm in height for split Hopkinson pressure bar(SHPB)dynamic compression testing.The test results reveal that increasing strain rate causes the increases of peak strength,σ_p,and the corresponding failure strain,ε_p,while the dynamic elastic modulus,E_d,remains almost unchanged.Interestingly,under the same strain rates,Ed of the composite rock specimen is found to decline first and then increase as the dip angle of bedding plane increases.The obtained rock failure patterns due to various dip angles lead to failure modes that could be classified into four categories from our dynamic tests.Also,a series of counterpart numerical simulations has been undertaken,showing that dynamic responses are in good agreement with those obtained from the SHPB tests.The numerical analysis enables us to Iook into the dynamic characteristics of the composite rock mass subjected to a broader range of strain rates and dip angles than these being tested.展开更多
BACKGROUND:The surgical step-up approach often requires multiple debridements and might not be suitable for infected pancreatic necrosis(IPN)patients with various abscesses or no safe route for percutaneous catheter d...BACKGROUND:The surgical step-up approach often requires multiple debridements and might not be suitable for infected pancreatic necrosis(IPN)patients with various abscesses or no safe route for percutaneous catheter drainage(PCD).This case-control study aimed to investigate the safety and effectiveness of one-step laparoscopic pancreatic necrosectomy(LPN)in treating IPN.METHODS:This case-control study included IPN patients undergoing one-step LPN or surgical step-up in our center from January 2015 to December 2020.The short-term and long-term complications after surgery,length of hospital stay,and postoperative ICU stays in both groups were analyzed.Univariate and multivariate logistic regression analyses were performed to explore the risk factors of major complications or death.RESULTS:A total of 53 IPN patients underwent one-step LPN and 37 IPN patients underwent surgical step-up approach in this study.There was no significant difference in the incidence of death,major complications,new-onset diabetes,or new-onset pancreatic exocrine insufficiency between the two groups.However,the length of hospital stay in the one-step LPN group was significantly shorter than that in the surgical step-up group.Univariate regression analysis showed that the surgical approach(one-step/step-up)was not the risk factor for major complications or death.Multivariate logistic regression analysis indicated that computed tomography(CT)severity index,American Society of Anesthesiologists(ASA)class IV,and white blood cell(WBC)were the significant risk factors for major complications or death.CONCLUSION:One-step LPN is as safe and effective as the surgical step-up approach for treating IPN patients,and reduces total hospital stay.展开更多
基金the National Natural Science Foundation of China(No.21875149)111 project(B17030)the Basal Research Fund of the Central University.
文摘The formation of humins hampers the large-scale production of 5-hydroxymethylfurfural(HMF)in biorefinery.Here,a detailed reaction network of humin formation at the initial stage of fructose-to-HMF dehydration in water is delineated by combined experimental,spectroscopic,and theoretical studies.Three bimolecular reaction pathways to build up soluble humins are demonstrated.That is,the intermolecular etherification of β-furanose at room temperature initiates the C12 path,whereas the C-C cleavage of a-furanose at 130-150℃ leads to C11 path,and that of open-chain fructose at 180℃ to C11' path.The successive intramolecular dehydrations and condensations of the as-formed bimolecular intermediates lead to three types of soluble humins.We show that the C12 path could be restrained by using HCl or AlCl_(3) catalyst,and both the C12 and C110 paths could be effectively inhibited by adding THF as a co-solvent or accelerating heating rate via microwave heating.
基金supported by the National Natural Science Foundation of China(22378277)the 111 project(B17030)the Basal Research Fund of the Central University(2016SCU04B06).
文摘High-efficient production of 5-hydroxymethylfurfural(HMF),a“sleeping giant”in sustainable chemistry,from cellulose depends significantly on the effective separation of cellulose from lignocellulosic biomass.Herein,we report the fractional separation of wheat straw cellulose(WSC)from wheat straw under solvothermal conditions using a mixed solvent of γ-valerolactone(GVL)and H_(2)O as the separating solvent,wherein the impacts of fractional separation parameters(solvent composition,temperature,and time)on removals of lignin and hemicellulose as well as purity and recovery of cellulose were studied by a Box-Behnken Design of response surface method.The optimization of the solvothermal parameters enabled an optimal fractional separation condition(V_(GVL):~60.0%,T:205℃,t:~1.7 h)that led to a higher purity(89.4%)and recovery(86.7%)of cellulose in WSC.A further correlation of the removals of lignin and hemicellulose as well as purity and recovery of cellulose with the yield of HMF excluded an independent influence of the above factors.Instead,a comprehensive contribution of high fractional separation efficiency(defined as the product of cellulose purity and recovery)and low crystallinity of WSC was found to improve the HMF yield.However,the heat-and freeze-dryings of WSC after the solvothermal separation were found to lower the HMF molar yield because it re-improved the crystallinity of WSC.A high HMF molar yield of 58.6%was achieved after reacting wet-WSC in a mixed solvent of 1,4-dioxane and H_(2)O at 180℃for 20 min,which was 1.5 fold higher than that from microcrystalline cellulose.This work highlights the importance of enhancing the fractional separation efficiency of cellulose from lignocellulosic biomass while avoiding the drying process for future HMF biorefinery.
基金supported by Yulin Science and Technology Bureau (Grant No 2023-CXY-202)Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No 23JP008)Key Research and Development Projects of Shaanxi Province (Grant No 2024GXYBXM-213) and (Grant No 52102109)
文摘In response to global carbon neutrality targets,there is an urgent need for large-scale,clean hydrogen production technologies to supplant fossil fuels and underpin the establishment of a‘hydrogen economy’.The prospect of large-scale on-site green hydrolysis of Mg-based materials for hydrogen production has attracted wide attention.Aiming at the problems of easy formation of inert oxide layer on its surface and the production of Mg(OH)_(2) to hinder the hydrolysis process,it is urgent to explore efficient,low-cost and green modification strategies.In this work,the green modification strategy for hydrolyzing hydrogen production of Mg-based materials was summarized,and the fast initial kinetics and high hydrogen production rate could be achieved by adjusting hydrolysis medium conditions and modifying Mg-based material.The significance of hydrolytic hydrogen production technology and device development for the realization of Mg-based hydrolytic hydrogen production was evaluated.Meanwhile,this work looks forward to the future direction of hydrogen production modification by hydrolysis of Mg-based alloy,and gradually optimizes the hydrolysis performance of industrial multi-component waste Mg alloy under the premise of green hydrogen production,and proposes the goal of efficient modification of waste Mg alloy,high-quality utilization of seawater,and low-cost and controllable hydrogen production process.
基金supported by the Jiangsu Seed Industry Revitalization Project(JBGS[2021]024)Fundamental Research Funds for the Central Universities(KYT2023002)+2 种基金Jiangsu Province Capability Improvement Project through Science,TechnologyEducation Jiangsu Provincial Medical Key Discipline(ZDXK202211)Shandong Province Natural Science Foundation(ZR2020MC074)
文摘Extracellular membrane proteins are crucial for mediating cell attachment,recognition,and signal transduction in the testicular microenvironment,particularly germline stem cells.Cadherin 18(CDH18),a type Ⅱ classical cadherin,is primarily expressed in the nervous and reproductive systems.Here,we investigated the expression of CDH18in neonatal porcine prospermatogonia(ProSGs)and murine spermatogonial stem cells(SSCs).Disruption of CDH18 expression did not adversely affect cell morphology,proliferation,self-renewal,or differentiation in cultured porcine ProSGs,but enhanced cell adhesion and prolonged cell maintenance.Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion.To further elucidate the function of CDH18 in germ cells,Cdh18 knockout mice were generated,which exhibited normal testicular morphology,histology,andspermatogenesis.Transcriptomic analysis showed increased expression of genes associated with adhesion,consistent with the observations in porcine ProSGs.The interaction of CDH18withβ-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency.Collectively,these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs.Understanding this regulatory mechanism provides significant insights into the testicular niche.
基金supported by Rosa roxburghii industry development program of Guizhou Province,China(QCN2019-261)the National Natural Science Foundation of China(31260379)the National Natural Science Foundation of China(31960485).
文摘This study mainly investigated the regulatory effect of Rosa roxburghii Tratt fruit juice fermented by Lacticaseibacillus paracasei SR10-1(LAB-RRTJ)on modulating gut microbiota in dextran sulfate sodium(DSS)-induced ulcerative colitis in mice.Compared to control group,DSS induction decreased body weight of mice,indexes of Shannon,Simpson,Chao1 and Faith_pd,and increased disease activity index(DAI)and levels of interleukin 1β(IL-1β),IL-6,tumor necrosis factorα(TNF-α)and interferon-γ(IFN-γ);And this induction also led to an increase in Proteobacteria,Verrucomicrobia and Actinobacteria at phylum level,harmful bacterial species richness at genus level,and relative richness of S.sciuri,Desulfovibrio C21_c20,R.gnavus and Akkermansia muciniphila at species level,and a decrease in Firmicutes at phylum level and relative richness of B.acidifaciens in mice.LAB-RRTJ increased body weight of mice with DSS induced ulcerative colitis(UC)and indexes of Shannon,Simpson,Chao1 and Faith_pd,reduced DAI and the content of four infl ammatory factors and improved gut microbiota imbalance in DSS induced UC mice.Besides,the number of operational taxonomic units(OTUs)increased,α-diversity andβ-diversity were restored and similar to those in mice in the control group after LAB-RRTJ treatment.Compared with the positive drug treatment group,LAB-RRTJ has a better effect on regulating gut microbiota diversity in colitis mice.Correlation analysis showed that infl ammatory factors were positively correlated with harmful bacteria and negatively correlated with beneficial bacteria which commonly found in some colitis mice.Taken together,our study demonstrated that LAB-RRTJ could alleviate DSS-induced colitis in mice through the modulation of infl ammatory cytokines and gut microbiota composition.
基金supported in part by the National Natural Science Foundation of China under Grant 62203468in part by the Technological Research and Development Program of China State Railway Group Co.,Ltd.under Grant Q2023X011+1 种基金in part by the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)under Grant 2022QNRC001in part by the Youth Talent Program Supported by China Railway Society,and in part by the Research Program of China Academy of Railway Sciences Corporation Limited under Grant 2023YJ112.
文摘Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance.
基金supported by the National Natural Science Foundation of China(Grant No.51608174)the Programmes for Science and Technology Development of Henan Province,China(Grant No.192102310014)。
文摘Layered rock mass of significant strength changes for adjacent layers is frequently observed in underground excavation,and dynamic loading is a prevalent scenario generated during excavation.In order to improve the driving efficiency and reduce engineering accidents,dynamic compression characteristics of this kind of rock mass should be understood.The dynamic properties of a layered composite rock mass are investigated through a series of rock tests and numerical simulations.The rock mass is artificially made of various proportions of sand,cement and water to control the distinct strength variations at various composite layers separated by parallel bedding planes.All rock specimens are prefabricated in a specially designed mould and then cut into 50 mm in diameter and 50 mm in height for split Hopkinson pressure bar(SHPB)dynamic compression testing.The test results reveal that increasing strain rate causes the increases of peak strength,σ_p,and the corresponding failure strain,ε_p,while the dynamic elastic modulus,E_d,remains almost unchanged.Interestingly,under the same strain rates,Ed of the composite rock specimen is found to decline first and then increase as the dip angle of bedding plane increases.The obtained rock failure patterns due to various dip angles lead to failure modes that could be classified into four categories from our dynamic tests.Also,a series of counterpart numerical simulations has been undertaken,showing that dynamic responses are in good agreement with those obtained from the SHPB tests.The numerical analysis enables us to Iook into the dynamic characteristics of the composite rock mass subjected to a broader range of strain rates and dip angles than these being tested.
基金This work was supported by the Clinical Research Physician Program of Tongji Medical College,Huazhong University of Science and Technology。
文摘BACKGROUND:The surgical step-up approach often requires multiple debridements and might not be suitable for infected pancreatic necrosis(IPN)patients with various abscesses or no safe route for percutaneous catheter drainage(PCD).This case-control study aimed to investigate the safety and effectiveness of one-step laparoscopic pancreatic necrosectomy(LPN)in treating IPN.METHODS:This case-control study included IPN patients undergoing one-step LPN or surgical step-up in our center from January 2015 to December 2020.The short-term and long-term complications after surgery,length of hospital stay,and postoperative ICU stays in both groups were analyzed.Univariate and multivariate logistic regression analyses were performed to explore the risk factors of major complications or death.RESULTS:A total of 53 IPN patients underwent one-step LPN and 37 IPN patients underwent surgical step-up approach in this study.There was no significant difference in the incidence of death,major complications,new-onset diabetes,or new-onset pancreatic exocrine insufficiency between the two groups.However,the length of hospital stay in the one-step LPN group was significantly shorter than that in the surgical step-up group.Univariate regression analysis showed that the surgical approach(one-step/step-up)was not the risk factor for major complications or death.Multivariate logistic regression analysis indicated that computed tomography(CT)severity index,American Society of Anesthesiologists(ASA)class IV,and white blood cell(WBC)were the significant risk factors for major complications or death.CONCLUSION:One-step LPN is as safe and effective as the surgical step-up approach for treating IPN patients,and reduces total hospital stay.