We consider the numberπ(x,y;q,a)of primes p≤such that p≡a(mod q)and(p-a)/q is free of prime factors greater than y.Assuming a suitable form of Elliott-Halberstam conjecture,it is proved thatπ(x,y:q,a)is asymptotic...We consider the numberπ(x,y;q,a)of primes p≤such that p≡a(mod q)and(p-a)/q is free of prime factors greater than y.Assuming a suitable form of Elliott-Halberstam conjecture,it is proved thatπ(x,y:q,a)is asymptotic to p(log(x/q)/log y)π(x)/φ(q)on average,subject to certain ranges of y and q,where p is the Dickman function.Moreover,unconditional upper bounds are also obtained via sieve methods.As a typical application,we may control more effectively the number of shifted primes with large prime factors.展开更多
基金supported by the Programme de Recherche Conjoint CNRS-NSFC(Grant No.1457)supported by National Natural Science Foundation of China(Grant No.11531008)+3 种基金the Ministry of Education of China(Grant No.IRT16R43)the Taishan Scholar Project of Shandong Provincesupported by National Natural Science Foundation of China(Grant No.11601413)NSBRP of Shaanxi Province(Grant No.2017JQ1016)
文摘We consider the numberπ(x,y;q,a)of primes p≤such that p≡a(mod q)and(p-a)/q is free of prime factors greater than y.Assuming a suitable form of Elliott-Halberstam conjecture,it is proved thatπ(x,y:q,a)is asymptotic to p(log(x/q)/log y)π(x)/φ(q)on average,subject to certain ranges of y and q,where p is the Dickman function.Moreover,unconditional upper bounds are also obtained via sieve methods.As a typical application,we may control more effectively the number of shifted primes with large prime factors.