Background:The maintenance dosage of selexipag is categorized as low,medium or high.In order to assess the efficacy and safety of different dosages of selexipag for the risk stratification of pulmonary arterial hypert...Background:The maintenance dosage of selexipag is categorized as low,medium or high.In order to assess the efficacy and safety of different dosages of selexipag for the risk stratification of pulmonary arterial hypertension(PAH),we performed a sys-tematic review and meta-analysis.Methods:Studies assessing PAH risk stratification indices,such as the World Health Organization functional class(WHO-FC),six-minute walk distance(6MWD),N-terminal pro-B-type natriuretic peptide(NT-proBNP)level,right atrial pressure(RAP),cardiac index(CI)and mixed venous oxygen saturation(SvO2),were included.Results:Thirteen studies were included.Selexipag led to improvements in the 6MWD(MD:24.20 m,95%CI:10.74-37.67),NT-proBNP(SMD:-0.41,95%CI:-0.79-0.04),CI(MD:0.47 L/min/m^(2),95%CI:0.17-0.77)and WHO-FC(OR:0.564,95%CI:0.457-0.697).Subgroup analysis demonstrated that all three dosages improved the 6MWD.A moderate dosage led to improvements in the CI(MD:0.30 L/min/m^(2),95%CI:0.15-0.46)and WHO-FC(OR:0.589,95%CI:0.376-0.922).Within 6 months of treatment,only the WHO-FC and CI were significantly improved(OR:0.614,95%CI:0.380-0.993;MD:0.30 L/min/m^(2),95%CI:0.16-0.45,respectively).More than 6 months of treatment significantly improved the 6MWD,WHO-FC and NT-proBNP(MD:40.87 m,95%CI:10.97-70.77;OR:0.557,95%CI:0.440-0.705;SMD:-0.61,95%CI:-1.17-0.05,respectively).Conclusions:Low,medium,and high dosages of selexipag all exhibited good effects.When treatment lasted for more than 6 months,selexipag exerted obvious effects,even in the low-dosage group.This finding is important for guiding individualized treatments.展开更多
Background:Circular RNAs(circRNAs)have been recognized as significant regulators of pulmonary hypertension(PH);however,the differential expression and function of circRNAs in different vascular cells under hypoxia rem...Background:Circular RNAs(circRNAs)have been recognized as significant regulators of pulmonary hypertension(PH);however,the differential expression and function of circRNAs in different vascular cells under hypoxia remain unknown.Here,we identified co-differentially expressed circRNAs and determined their putative roles in the proliferation of pulmonary artery smooth muscle cells(PASMCs),pulmonary microvascular endothelial cells(PMECs),and pericytes(PCs)under hypoxia.Methods:Whole transcriptome sequencing was performed to analyze the differential expression of circRNAs in three different vascular cell types.Bioinformatic analysis was used to predict their putative biological function.Quantitative real-time polymerase chain reaction,Cell Counting Kit-8,and EdU Cell Proliferation assays were carried out to determine the role of circular postmeiotic segregation 1(circPMS1)as well as its potential sponge mechanism in PASMCs,PMECs,and PCs.Results:PASMCs,PMECs,and PCs exhibited 16,99,and 31 differentially expressed circRNAs under hypoxia,respectively.CircPMS1 was upregulated in PASMCs,PMECs,and PCs under hypoxia and enhanced the proliferation of vascular cells.CircPMS1may upregulate DEP domain containing 1(DEPDC1)and RNA polymerase II subunit D expression by targeting microRNA-432-5p(miR-432-5p)in PASMCs,upregulate MAX interactor 1(MXI1)expression by targeting miR-433-3p in PMECs,and upregulate zinc finger AN1-type containing 5(ZFAND5)expression by targeting miR-3613-5p in PCs.Conclusions:Our results suggest that circPMS1 promotes cell proliferation through the miR-432-5p/DEPDC1 or miR-432-5p/POL2D axis in PASMCs,through the miR-433-3p/MXI1 axis in PMECs,and through the miR-3613-5p/ZFAND5 axis in PCs,which provides putative targets for the early diagnosis and treatment of PH.展开更多
Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial...Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial cell(BMEC)dysfunction via the miR-9/Hes1 axis remain unknown.Therefore,the current study aimed to determine the effects of EXOs on BMEC proliferation,migration,and death via the miR-9/Hes1 axis.Methods:Immunofluorescence,quantitative real-time polymerase chain reaction,cell counting kit-8 assay,wound healing assay,calcein-acetoxymethyl/propidium iodide staining,and hematoxylin and eosin staining were used to determine the role and mechanism of EXOs on BMECs.Results:EXOs promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions.The overexpression of miR-9 promoted BMEC prolifera-tion and migration and reduced cell death under hypoxic conditions.Moreover,miR-9 downregulation inhibited BMEC proliferation and migration and also promoted cell death.Hes1 silencing ameliorated the effect of amtagomiR-9 on BMEC proliferation and migration and cell death.Hyperemic structures were observed in the regions of the hippocampus and cortex in hypoxia-induced mice.Meanwhile,EXO treatment improved cerebrovascular alterations.Conclusion:NSC-derived EXOs can promote BMEC proliferation and migra-tion and reduce cell death via the miR-9/Hes1 axis under hypoxic conditions.Therefore,EXO therapeutic strategies could be considered for hypoxia-induced vascular injury.展开更多
Background:Sini decoction(SND)is a classic traditional Chinese medicine(TCM)formulation that can be used to treat anxiety-related disorders,but the active substance and underlying molecular mechanism of its anxiolytic...Background:Sini decoction(SND)is a classic traditional Chinese medicine(TCM)formulation that can be used to treat anxiety-related disorders,but the active substance and underlying molecular mechanism of its anxiolytic effects are unknown.In this study,network pharmacology,molecular docking research and experimental verification methods were used to preliminarily explore the bioactive compounds and potential target mechanisms of SND anxiolytic.Methods:The active components and corresponding targets of SND were collected by TCMSP.GeneCards,OMIM,PharmGkb,TTD and Drugbank were used to search for the targets of anxiety disorders.The core target of SND in the treatment of anxiety was screened by PPI.R language was used to analyze the intersection targets of SND in the treatment of anxiety disorders by GO and KEGG enrichment analysis.AutoDock Vina was used for molecular docking,and Discovery Studio was used for visual conformation analysis after docking.The anti-anxiety effect and molecular mechanism of SND were studied by in vivo experiment.Results:Based on network pharmacological analysis,we obtained 112 active ingredients and 350 effective targets related to anxiety from SND.In PPI analysis,26 targets such as STAT3,MAPK3,MAPK1,MAPK14,SRC,HSP90AA1,TP53 and PIK3CA were identified as core targets.GO and KEGG analysis showed that the anxiolytic mechanism of SND may be related to the neuroactive ligand-receptor interaction pathway and inflammatory pathway.Molecular docking showed that quercetin,naringenin,licochalcone A had high affinity with JAK2,MAPK14 and MAPK3.Animal experiments have shown that SND reverses the upregulation of GluN2B(NMDAR)and GluA1(AMPAR)proteins,and SND improves anxiety disorders by regulating glutamate transmitter levels,which may be related to neuroactive ligand-receptor interaction pathways,particularly glutamate receptors.Conclusion:This study shows that SND can improve FS-induced behavioral changes in mice and can modulate hippocampal synapse-associated protein defects,partially reversing glutamate receptor expression through the neuroactive ligand-receptor interaction pathway,and further improved anxiety disorders.At the same time,combined with network pharmacology and molecular docking,the key components,core targets and related pathways of SND are discussed,which shows that the active components of SND play an effective role in anxiety through multi-targets and multi-pathways,which provides a reference for the material basis and mechanism of SND.展开更多
Sustainable energy conversion and storage technologies are a vital prerequisite for neutral future carbon.To this end,carbon materials with attractive features,such as tunable pore architecture,good electrical conduct...Sustainable energy conversion and storage technologies are a vital prerequisite for neutral future carbon.To this end,carbon materials with attractive features,such as tunable pore architecture,good electrical conductivity,outstanding physicochemical stability,abundant resource,and low cost,have used as promising electrode materials for energy conversion and storage.Defect engineering could modulate the structures of carbon materials,thereby affecting their electronic properties.The presence of defects on carbons may lead to asymmetric charge distribution,change in geometrical configuration,and distortion of the electronic structure that may result in unexpected electrochemical performances.In this review,recent advances in defects of carbons used for energy conversion and storage were examined in terms of types,regulation strategies,and fine characterization means of defects.The applications of such carbons in supercapacitors,rechargeable batteries,and electrocatalysis were also discussed.The perspectives toward the development of defect engineering carbons were proposed.In all,novel insights related to improvement in high-performance carbon materials for future energy conversion and storage applications were provided.展开更多
Pericytes are the main cellular components of tiny arteries and capillaries.Studies have found that pericytes can undergo morphological contraction or relaxation under stimulation by cytokines,thus affecting the contr...Pericytes are the main cellular components of tiny arteries and capillaries.Studies have found that pericytes can undergo morphological contraction or relaxation under stimulation by cytokines,thus affecting the contraction and relaxation of microvessels and playing an essential role in regulating vascular microcirculation.Moreover,due to the characteristics of stem cells,pericytes can differentiate into a variety of inflammatory cell phenotypes,which then affect the immune function.Additionally,pericytes can also participate in angiogenesis and wound healing by interacting with endothelial cells in vascular microcirculation disorders.Here we review the origin,biological phenotype and function of pericytes,and discuss the potential mechanisms of pericytes in vascular microcirculation disorders,especially in pulmonary hypertension,so as to provide a sound basis and direction for the prevention and treatment of vascular microcirculation diseases.展开更多
基金Program of the National Natural Science Foundation of China,Grant/Award Number:81700045,81870042 and 82200065The Department Development Fund of Shanghai Pulmonary Hospital,Grant/Award Number:201906-0314+2 种基金The Program of Shanghai Pulmonary Hospital,Grant/Award Number:FKLY20011The Three-year Action Plan to Promote Clinical Skills and Clinical Innovation in Municipal Hospitals,Grant/Award Number:SHDC2020CR4021Young Talent Program of Shanghai Municipal Health Commission,Grant/Award Number:2022YQ070。
文摘Background:The maintenance dosage of selexipag is categorized as low,medium or high.In order to assess the efficacy and safety of different dosages of selexipag for the risk stratification of pulmonary arterial hypertension(PAH),we performed a sys-tematic review and meta-analysis.Methods:Studies assessing PAH risk stratification indices,such as the World Health Organization functional class(WHO-FC),six-minute walk distance(6MWD),N-terminal pro-B-type natriuretic peptide(NT-proBNP)level,right atrial pressure(RAP),cardiac index(CI)and mixed venous oxygen saturation(SvO2),were included.Results:Thirteen studies were included.Selexipag led to improvements in the 6MWD(MD:24.20 m,95%CI:10.74-37.67),NT-proBNP(SMD:-0.41,95%CI:-0.79-0.04),CI(MD:0.47 L/min/m^(2),95%CI:0.17-0.77)and WHO-FC(OR:0.564,95%CI:0.457-0.697).Subgroup analysis demonstrated that all three dosages improved the 6MWD.A moderate dosage led to improvements in the CI(MD:0.30 L/min/m^(2),95%CI:0.15-0.46)and WHO-FC(OR:0.589,95%CI:0.376-0.922).Within 6 months of treatment,only the WHO-FC and CI were significantly improved(OR:0.614,95%CI:0.380-0.993;MD:0.30 L/min/m^(2),95%CI:0.16-0.45,respectively).More than 6 months of treatment significantly improved the 6MWD,WHO-FC and NT-proBNP(MD:40.87 m,95%CI:10.97-70.77;OR:0.557,95%CI:0.440-0.705;SMD:-0.61,95%CI:-1.17-0.05,respectively).Conclusions:Low,medium,and high dosages of selexipag all exhibited good effects.When treatment lasted for more than 6 months,selexipag exerted obvious effects,even in the low-dosage group.This finding is important for guiding individualized treatments.
基金Central University Basic Research Fund of China,Grant/Award Number:22120220562National Natural Science Foundation of China,Grant/Award Number:81870044+1 种基金Natural Science Foundation of Shanghai,Grant/Award Number:201409004100 and 21ZR1453800Shanghai Pulmonary Hospital,Grant/Award Number:FKLY20005 and fkzr2320。
文摘Background:Circular RNAs(circRNAs)have been recognized as significant regulators of pulmonary hypertension(PH);however,the differential expression and function of circRNAs in different vascular cells under hypoxia remain unknown.Here,we identified co-differentially expressed circRNAs and determined their putative roles in the proliferation of pulmonary artery smooth muscle cells(PASMCs),pulmonary microvascular endothelial cells(PMECs),and pericytes(PCs)under hypoxia.Methods:Whole transcriptome sequencing was performed to analyze the differential expression of circRNAs in three different vascular cell types.Bioinformatic analysis was used to predict their putative biological function.Quantitative real-time polymerase chain reaction,Cell Counting Kit-8,and EdU Cell Proliferation assays were carried out to determine the role of circular postmeiotic segregation 1(circPMS1)as well as its potential sponge mechanism in PASMCs,PMECs,and PCs.Results:PASMCs,PMECs,and PCs exhibited 16,99,and 31 differentially expressed circRNAs under hypoxia,respectively.CircPMS1 was upregulated in PASMCs,PMECs,and PCs under hypoxia and enhanced the proliferation of vascular cells.CircPMS1may upregulate DEP domain containing 1(DEPDC1)and RNA polymerase II subunit D expression by targeting microRNA-432-5p(miR-432-5p)in PASMCs,upregulate MAX interactor 1(MXI1)expression by targeting miR-433-3p in PMECs,and upregulate zinc finger AN1-type containing 5(ZFAND5)expression by targeting miR-3613-5p in PCs.Conclusions:Our results suggest that circPMS1 promotes cell proliferation through the miR-432-5p/DEPDC1 or miR-432-5p/POL2D axis in PASMCs,through the miR-433-3p/MXI1 axis in PMECs,and through the miR-3613-5p/ZFAND5 axis in PCs,which provides putative targets for the early diagnosis and treatment of PH.
基金Program of Natural Science Foundation of Shanghai,Grant/Award Number:21ZR1453800 and 22ZR1452400Program of National Natural Science Foundation of China,Grant/Award Number:82370057+3 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:22120220562Program of Shanghai Municipal Health Commission,Grant/Award Number:20204Y0384Program of National Key Research and Development Project of China,Grant/Award Number:2023YFC2509500。
文摘Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial cell(BMEC)dysfunction via the miR-9/Hes1 axis remain unknown.Therefore,the current study aimed to determine the effects of EXOs on BMEC proliferation,migration,and death via the miR-9/Hes1 axis.Methods:Immunofluorescence,quantitative real-time polymerase chain reaction,cell counting kit-8 assay,wound healing assay,calcein-acetoxymethyl/propidium iodide staining,and hematoxylin and eosin staining were used to determine the role and mechanism of EXOs on BMECs.Results:EXOs promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions.The overexpression of miR-9 promoted BMEC prolifera-tion and migration and reduced cell death under hypoxic conditions.Moreover,miR-9 downregulation inhibited BMEC proliferation and migration and also promoted cell death.Hes1 silencing ameliorated the effect of amtagomiR-9 on BMEC proliferation and migration and cell death.Hyperemic structures were observed in the regions of the hippocampus and cortex in hypoxia-induced mice.Meanwhile,EXO treatment improved cerebrovascular alterations.Conclusion:NSC-derived EXOs can promote BMEC proliferation and migra-tion and reduce cell death via the miR-9/Hes1 axis under hypoxic conditions.Therefore,EXO therapeutic strategies could be considered for hypoxia-induced vascular injury.
基金financially supported by the Shaanxi Province Key Project for Social Development(No.2022SF-205).
文摘Background:Sini decoction(SND)is a classic traditional Chinese medicine(TCM)formulation that can be used to treat anxiety-related disorders,but the active substance and underlying molecular mechanism of its anxiolytic effects are unknown.In this study,network pharmacology,molecular docking research and experimental verification methods were used to preliminarily explore the bioactive compounds and potential target mechanisms of SND anxiolytic.Methods:The active components and corresponding targets of SND were collected by TCMSP.GeneCards,OMIM,PharmGkb,TTD and Drugbank were used to search for the targets of anxiety disorders.The core target of SND in the treatment of anxiety was screened by PPI.R language was used to analyze the intersection targets of SND in the treatment of anxiety disorders by GO and KEGG enrichment analysis.AutoDock Vina was used for molecular docking,and Discovery Studio was used for visual conformation analysis after docking.The anti-anxiety effect and molecular mechanism of SND were studied by in vivo experiment.Results:Based on network pharmacological analysis,we obtained 112 active ingredients and 350 effective targets related to anxiety from SND.In PPI analysis,26 targets such as STAT3,MAPK3,MAPK1,MAPK14,SRC,HSP90AA1,TP53 and PIK3CA were identified as core targets.GO and KEGG analysis showed that the anxiolytic mechanism of SND may be related to the neuroactive ligand-receptor interaction pathway and inflammatory pathway.Molecular docking showed that quercetin,naringenin,licochalcone A had high affinity with JAK2,MAPK14 and MAPK3.Animal experiments have shown that SND reverses the upregulation of GluN2B(NMDAR)and GluA1(AMPAR)proteins,and SND improves anxiety disorders by regulating glutamate transmitter levels,which may be related to neuroactive ligand-receptor interaction pathways,particularly glutamate receptors.Conclusion:This study shows that SND can improve FS-induced behavioral changes in mice and can modulate hippocampal synapse-associated protein defects,partially reversing glutamate receptor expression through the neuroactive ligand-receptor interaction pathway,and further improved anxiety disorders.At the same time,combined with network pharmacology and molecular docking,the key components,core targets and related pathways of SND are discussed,which shows that the active components of SND play an effective role in anxiety through multi-targets and multi-pathways,which provides a reference for the material basis and mechanism of SND.
基金the National Natural Science Foundation of China(52062012)Key Science&Technology Project of Hainan Province(ZDYF2020028)+2 种基金Key-Area Research and Development Program of Guangdong Province(2019B1102109003)the Innovation Team of Universities of Guangdong Province(2020KCXTD011)Guangdong Province Key Discipline Construction Project(2021ZDJS102).
文摘Sustainable energy conversion and storage technologies are a vital prerequisite for neutral future carbon.To this end,carbon materials with attractive features,such as tunable pore architecture,good electrical conductivity,outstanding physicochemical stability,abundant resource,and low cost,have used as promising electrode materials for energy conversion and storage.Defect engineering could modulate the structures of carbon materials,thereby affecting their electronic properties.The presence of defects on carbons may lead to asymmetric charge distribution,change in geometrical configuration,and distortion of the electronic structure that may result in unexpected electrochemical performances.In this review,recent advances in defects of carbons used for energy conversion and storage were examined in terms of types,regulation strategies,and fine characterization means of defects.The applications of such carbons in supercapacitors,rechargeable batteries,and electrocatalysis were also discussed.The perspectives toward the development of defect engineering carbons were proposed.In all,novel insights related to improvement in high-performance carbon materials for future energy conversion and storage applications were provided.
基金Program of Fundamental Research Funds for the Central Universities,Grant/Award Number:22120220562Program of Natural Science Foundation of Shanghai,Grant/Award Number:201409004100 and 21ZR1453800+1 种基金Three Year Action Plan to Promote Clinical Skills and Clinical Innovation in Municipal Hospitals,Grant/Award Number:SHDC2020CR6016-002 and SHDC2020CR4021Program of Shanghai Pulmonary Hospital,Grant/Award Number:fkzr2320 and FKLY20005。
文摘Pericytes are the main cellular components of tiny arteries and capillaries.Studies have found that pericytes can undergo morphological contraction or relaxation under stimulation by cytokines,thus affecting the contraction and relaxation of microvessels and playing an essential role in regulating vascular microcirculation.Moreover,due to the characteristics of stem cells,pericytes can differentiate into a variety of inflammatory cell phenotypes,which then affect the immune function.Additionally,pericytes can also participate in angiogenesis and wound healing by interacting with endothelial cells in vascular microcirculation disorders.Here we review the origin,biological phenotype and function of pericytes,and discuss the potential mechanisms of pericytes in vascular microcirculation disorders,especially in pulmonary hypertension,so as to provide a sound basis and direction for the prevention and treatment of vascular microcirculation diseases.