Cancer is a leading cause of death globally,with limited treatment options and several limitations.Chemotherapeutic agents often result in toxicity which long-term conventional treatment.Phytochemicals are natural con...Cancer is a leading cause of death globally,with limited treatment options and several limitations.Chemotherapeutic agents often result in toxicity which long-term conventional treatment.Phytochemicals are natural constituents that are more effective in treating various diseases with less toxicity than the chemotherapeutic agents providing alternative therapeutic approaches to minimize the resistance.These phytoconstituents act in several ways and deliver optimum effectiveness against cancer.Nevertheless,the effectiveness of phyto-formulations in the management of cancers may be constrained due to challenges related to inadequate solubility,bioavailability,and stability.Nanotechnology presents a promising avenue for transforming current cancer treatment methods through the incorporation of phytochemicals into nanosystems,which possess a range of advantageous characteristics such as biocompatibility,targeted and sustained release capabilities,and enhanced protective effects.This holds significant potential for future advancements in cancer management.Herein,this review aims to provide intensive literature on diverse nanocarriers,highlighting their applications as cargos for phytocompounds in cancer.Moreover,it offers an overview of the current advancements in the respective field,emphasizing the characteristics that contribute to favourable outcomes in both in vitro and in vivo settings.Lastly,clinical development and regulatory concerns are also discussed to check on the transformation of the concept as a promising strategy for combination therapy of phytochemicals and chemotherapeutics that could lead to cancer management in the future.展开更多
The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved ...The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved power generation.The cathode is generally recognized as the limiting factor due to its high-distance proton transfer,slow oxygen reduction reaction(ORR),and expensive materials.The heterogeneous reaction determines power gen-eration in MFC.This comprehensive review describes-recent advancements in the development of cathode mate-rials and catalysts associated with ORR.The recent studies indicated the utilization of different metal oxides,the ferrite-based catalyst to overcome this bottleneck.These studies conclude that some cathode materials,in parti-cular,graphene-based conductive polymer composites with non-precious metal catalysts provide substantial ben-efits for sustainable development in the field of MFCs.Furthermore,it also highlights the potentiality to replace the conventional platinum air cathode for the large-scale production of the next generation of MFCs.It was evi-dent from the experiments that cathode catalyst needs to be blended with conductive carbon materials to make cathode conductive and efficient for ORR.This review discusses various antifouling strategies for cathode biofoul-ing and its effect on the MFC performance.Moreover,it also depicts cost estimations of various catalysts essential for further scale-up of MFC technology.展开更多
Antibacterial resistance developed by bacteria due to the unlimited use of antibiotics has posed a challenge for human civilization.This kind of problem is not limited to India only,but it is a global concern.Nowadays...Antibacterial resistance developed by bacteria due to the unlimited use of antibiotics has posed a challenge for human civilization.This kind of problem is not limited to India only,but it is a global concern.Nowadays,many treatments and medicines for bacterial diseases have been developed.However,they possess some drawbacks.Therefore,the alternative medicine has been used to target the drug resistant mechanisms and such medicines have less side effects which is becoming necessary.Natural products have traditionally or historically been of importance for the development of antibacterial agents and are also known to overcome bacterial drug resistance by directly targeting the drug resistance mechanisms in bacteria.In recent years,researchers have also focused on new drug discovery from plant-based research.They have looked on various phytocompounds as antibacterial agents.In the current review,we report various classes of secondary metabolites such as phenolic compounds,flavonoids,alkaloids,saponins,terpenes,quinones,and some essential oils that have been used as an antibacterial agent.In addition,we also discuss several mechanisms behind bacterial multi-drug resistance that are used during bacterial pathogenesis.展开更多
Custard apple is a dry land fruit.Its leaves exhibit different pharmacological activities.In the present study,both silver(Ag)nanoparticles and chitosan-coated Ag(Chi-Ag)nanoparticles were fabricated using the aqueous...Custard apple is a dry land fruit.Its leaves exhibit different pharmacological activities.In the present study,both silver(Ag)nanoparticles and chitosan-coated Ag(Chi-Ag)nanoparticles were fabricated using the aqueous leaf extract of the custard apple plant.During preliminary phytochemical analysis,various types of phytocompounds were found in the aqueous leaf extract of the same plant.Next,both nanoparticles were physiochemically characterized.FTIR analysis exhibited the fingerprint vibrational peaks of active bioactive compounds in plant extract,Ag nanoparticles,and Chi-Ag nanoparticles.UV/Visible spectral analysis revealed the highest absorbance peak at 419 nm,indicating the presence of Ag nanoparticles.XRD analysis presented the face-centered cubic(FCC)structure of both prepared nanomaterials.Further,the average crystalline size of both Ag nanoparticles and Chi-Ag nanoparticles was calculated to be 23 and 74 nm,respectively.FESEM analysis showed the spherical and cubical shapes of Ag nanoparticles and Chi-Ag nanoparticles,respectively.EDS analysis indicated a peak around 3.29 keV,conforming to the binding energies of Ag ions.The biogenic nanomaterial also showed strong antibacterial activity against all tested bacterial pathogens.展开更多
文摘Cancer is a leading cause of death globally,with limited treatment options and several limitations.Chemotherapeutic agents often result in toxicity which long-term conventional treatment.Phytochemicals are natural constituents that are more effective in treating various diseases with less toxicity than the chemotherapeutic agents providing alternative therapeutic approaches to minimize the resistance.These phytoconstituents act in several ways and deliver optimum effectiveness against cancer.Nevertheless,the effectiveness of phyto-formulations in the management of cancers may be constrained due to challenges related to inadequate solubility,bioavailability,and stability.Nanotechnology presents a promising avenue for transforming current cancer treatment methods through the incorporation of phytochemicals into nanosystems,which possess a range of advantageous characteristics such as biocompatibility,targeted and sustained release capabilities,and enhanced protective effects.This holds significant potential for future advancements in cancer management.Herein,this review aims to provide intensive literature on diverse nanocarriers,highlighting their applications as cargos for phytocompounds in cancer.Moreover,it offers an overview of the current advancements in the respective field,emphasizing the characteristics that contribute to favourable outcomes in both in vitro and in vivo settings.Lastly,clinical development and regulatory concerns are also discussed to check on the transformation of the concept as a promising strategy for combination therapy of phytochemicals and chemotherapeutics that could lead to cancer management in the future.
文摘The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved power generation.The cathode is generally recognized as the limiting factor due to its high-distance proton transfer,slow oxygen reduction reaction(ORR),and expensive materials.The heterogeneous reaction determines power gen-eration in MFC.This comprehensive review describes-recent advancements in the development of cathode mate-rials and catalysts associated with ORR.The recent studies indicated the utilization of different metal oxides,the ferrite-based catalyst to overcome this bottleneck.These studies conclude that some cathode materials,in parti-cular,graphene-based conductive polymer composites with non-precious metal catalysts provide substantial ben-efits for sustainable development in the field of MFCs.Furthermore,it also highlights the potentiality to replace the conventional platinum air cathode for the large-scale production of the next generation of MFCs.It was evi-dent from the experiments that cathode catalyst needs to be blended with conductive carbon materials to make cathode conductive and efficient for ORR.This review discusses various antifouling strategies for cathode biofoul-ing and its effect on the MFC performance.Moreover,it also depicts cost estimations of various catalysts essential for further scale-up of MFC technology.
基金the funding support from Science and Engineering Research Board(SERB),Department of Science and Technology,Govt.of India for the“Start-up Research Grant-2019”(SRG/2019/001995).
文摘Antibacterial resistance developed by bacteria due to the unlimited use of antibiotics has posed a challenge for human civilization.This kind of problem is not limited to India only,but it is a global concern.Nowadays,many treatments and medicines for bacterial diseases have been developed.However,they possess some drawbacks.Therefore,the alternative medicine has been used to target the drug resistant mechanisms and such medicines have less side effects which is becoming necessary.Natural products have traditionally or historically been of importance for the development of antibacterial agents and are also known to overcome bacterial drug resistance by directly targeting the drug resistance mechanisms in bacteria.In recent years,researchers have also focused on new drug discovery from plant-based research.They have looked on various phytocompounds as antibacterial agents.In the current review,we report various classes of secondary metabolites such as phenolic compounds,flavonoids,alkaloids,saponins,terpenes,quinones,and some essential oils that have been used as an antibacterial agent.In addition,we also discuss several mechanisms behind bacterial multi-drug resistance that are used during bacterial pathogenesis.
基金The authors would like to thank Department of Science and Technology(DST-FIST),India for the grants provided(Grant No.DST-FIST/120/2012)to establish laboratory facilities at Department of Biotechnology,Kongunadu Arts and Science College,Coimbatore,Tamilnadu,IndiaDr.Piyush Kumar Gupta is thankful to the Department of Life Sciences,School of Basic Sciences and Research,Sharda University for providing the infrastructure and facility+2 种基金Walaa F.Alsanie would like to acknowledge Taif University TURSP Program(TURSP-2020/53)for fundingVijay Kumar Thakur would also like to thank the research support provided by the Royal Academy of Engineering(IAPP18-19\295)UKIERI(DST/INT/UK/P-164/2017).
文摘Custard apple is a dry land fruit.Its leaves exhibit different pharmacological activities.In the present study,both silver(Ag)nanoparticles and chitosan-coated Ag(Chi-Ag)nanoparticles were fabricated using the aqueous leaf extract of the custard apple plant.During preliminary phytochemical analysis,various types of phytocompounds were found in the aqueous leaf extract of the same plant.Next,both nanoparticles were physiochemically characterized.FTIR analysis exhibited the fingerprint vibrational peaks of active bioactive compounds in plant extract,Ag nanoparticles,and Chi-Ag nanoparticles.UV/Visible spectral analysis revealed the highest absorbance peak at 419 nm,indicating the presence of Ag nanoparticles.XRD analysis presented the face-centered cubic(FCC)structure of both prepared nanomaterials.Further,the average crystalline size of both Ag nanoparticles and Chi-Ag nanoparticles was calculated to be 23 and 74 nm,respectively.FESEM analysis showed the spherical and cubical shapes of Ag nanoparticles and Chi-Ag nanoparticles,respectively.EDS analysis indicated a peak around 3.29 keV,conforming to the binding energies of Ag ions.The biogenic nanomaterial also showed strong antibacterial activity against all tested bacterial pathogens.