BACKGROUND In this study,we retrospectively analysed macrophage infiltration and podocyte injury in three patients with diffuse proliferative lupus nephritis(LN)who un-derwent repeated renal biopsy.CASE SUMMARY Clinic...BACKGROUND In this study,we retrospectively analysed macrophage infiltration and podocyte injury in three patients with diffuse proliferative lupus nephritis(LN)who un-derwent repeated renal biopsy.CASE SUMMARY Clinical data of three diffuse proliferative LN patients with different pathological characteristics(case 1 was LN IV-G(A),case 2 was LN IV-G(A)+V,and case 3 was LN IV-G(A)+thrombotic microangiopathy)were reviewed.All patients underwent repeated renal biopsies 6 mo later,and renal biopsy specimens were studied.Macrophage infiltration was assessed by CD68 expression detected by immunohistochemical staining,and an immunofluorescence assay was used to detect podocin expression to assess podocyte damage.After treatment,Case 1 changed to LN III-(A),Case 2 remained as type V LN lesions,and Case 3,which changed to LN IV-S(A),had the worst prognosis.We observed reduced macro-phage infiltration after therapy.However,two of the patients with active lesions after treatment still showed macrophage infiltration in the renal interstitium.Before treatment,the three patients showed discontinuous expression of podocin.Notably,the integrity of podocin was restored after treatment in Case 1.CONCLUSION It may be possible to reverse podocyte damage and decrease the infiltrating ma-crophages in LN patients through effective treatment.展开更多
In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen wit...In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.展开更多
Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the co...Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory.展开更多
Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yi...Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs.展开更多
As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to intr...As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.展开更多
Many attentions have been previously focused to identify the multiple biochemical components related to tea quality and health benefits,however, the natural variation of biochemical components present in tea germplasm...Many attentions have been previously focused to identify the multiple biochemical components related to tea quality and health benefits,however, the natural variation of biochemical components present in tea germplasm has not been adequately evaluated. In this study, the main biochemical components, leaf morphological and yield characteristics were evaluated for four rounds of tea leaves in a panel of 87 elite tea cultivars suitable for black, green, or oolong tea. Significant variations were observed among the tea cultivars, as well as seasonal differences in the levels of the free amino acid(FAA), caffeine(CAF), tea polyphenols(TP), water extract(WE) and TP to FAA ratio(TP/FAA). Results showed that the average levels of FAA showed a seasonal change, with the highest level of 4.0% in the 1st spring tea in the cultivars suitable for green tea and the lowest of 3.2% in summer tea in the cultivars suitable for black tea. The average CAF content was highest 3.2% in the cultivars suitable for oolong tea in the 1st spring and the lowest 2.5% in the cultivars suitable for green tea in summer. Limited seasonal and varietal variations were noticed in the average levels of WE among the three categories of tea. In addition, significant natural variation of the morphological characteristics, bud length varying from 2.5 cm to 8.7 cm, bud density from 190.3 buds · m-2to 1 730.3 buds · m-2, mature leaves biomass from 128.4 kg · hm-2to 2 888.4 kg · hm-2, and yield component traits of 100 buds(one bud with two leaves) dry weight from 3.7 g to37.7 g, tea yield/round from 444.6 kg · hm-2to 905.3 kg · hm-2, were observed. The aim of our evaluation was not only to identify the advantages of seasonal and clonal variations but also to provide a new viewpoint for their further application. Representative accessions were selected from the germplasm to promote the establishment of an inherent biochemical constituent expressing the quality of black, green, and oolong tea. The findings might be utilized to establish early selection criteria to enhance the tea breeding and production program.展开更多
Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative posit...Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.展开更多
Objective:The aim of this study is to explore the active ingredients and mechanism of action of danhong injection(DHI)in treating myeloproliferative neoplasms using network pharmacology.Methods:The TCMSP platform and ...Objective:The aim of this study is to explore the active ingredients and mechanism of action of danhong injection(DHI)in treating myeloproliferative neoplasms using network pharmacology.Methods:The TCMSP platform and relevant literature were used to search for the active ingredients and targets of Radix Salviae and Carthami Flos in DHI.Disease targets related to myeloproliferative neoplasms were obtained from the GEO database,GeneCards,and DisGeNET database.The queried component targets were normalized using the UniProt database.Potential targets were identified by constructing protein-protein interactions networks using STRING 11.5 and visualized and analyzed using Cytoscape 3.9.1.GO and KEGG analysis were performed using the Metascape platform,and visualization was done using the built-in plug-in CluoGO or SangerBox platforms with Cytoscape 3.9.1.Results:The active ingredients of DHI for treating myeloproliferative neoplasms mainly consist of flavonoids and o-benzoquinones,including quercetin,luteolin,kaempferol,stigmasterol,tanshinone iia,cryptotanshinone,beta-carotene,2-isopropyl-8-methylphenanthrene-3,4-dione,and neocryptotanshinone ii.The potential targets are JUN,TP53,STAT3,AKT1,MAPK1,RELA,TNF,MAPK14,IL6,and FOS.The relevant signaling pathways involved are mainly TNFαsignaling pathway,PI3K-Akt signaling pathway,apoptosis,IL-17 signaling pathway,cellular senescence,MAPK signaling pathway,p53 signaling pathway,JAK-STAT signaling pathway,and NF-kappa B signaling.Conclusions:DHI acts mainly through flavonoids and o-benzoquinones to treat myeloproliferative neoplasms in a multi-targeted and multi-pathway manner.展开更多
This study establishes an evaluation and optimization framework for the public transit network based on social network analysis and a greedy algorithm,aiming to explore a quantitative approach to improving access to u...This study establishes an evaluation and optimization framework for the public transit network based on social network analysis and a greedy algorithm,aiming to explore a quantitative approach to improving access to urban parks through public transit optimization.Social network analysis and the ArcGIS platform are used to build a public transit network model within Nanjing Old City and analyze its overall network structure characteristics.The study also focuses on a method to improve the convenience of reaching regional and citylevel parks by public transit by increasing access and connecting points accordingly.A greedy algorithm is introduced to generate an optimized solution for improving public transit accessibility to regional and city-level parks,consequently enhancing their utilization.The major findings include:(1)The greedy algorithm effectively enhances the performance of the public transit network,but its benefits gradually diminish as more stations are added.(2)Strategically adding stations enhances the performance of most public transit access points,creating efficient pathways for other stations to directly reach these access points and enter regional and city-level parks.(3)The optimized public transit network model offers guidance for the planning and layout of regional and city-level parks.The site selection for new parks should prioritize establishing connections with the“hubs”in the public transit network.The proposed optimization of the public transit network in this study is specific to a single type of urban park,but subsequent research could be conducted to extend the optimization of public transit accessibility around more urban public resources.展开更多
Journal of Plant Ecology(JPE)was established in 2008 and is sponsored by the Botanical Society of China and the Institute of Botany,Chinese Academy of Sciences.Published by Oxford University Press,UK,JPE encompasses a...Journal of Plant Ecology(JPE)was established in 2008 and is sponsored by the Botanical Society of China and the Institute of Botany,Chinese Academy of Sciences.Published by Oxford University Press,UK,JPE encompasses a wide range of article types within the expansive field of plant ecology.As of July 2021,JPE has transitioned to fully Open Access,ensuring unrestricted access to the full text for both readers and authors.This shift enhances the journal’s role as a crucial platform for plant ecologists worldwide to disseminate their research findings.展开更多
The size and distribution of leaf area determine light interception in a crop canopy and influence overall photosynthesis and yield. Optimized plant architecture renders modern maize hybrids(Zea mays L.) more producti...The size and distribution of leaf area determine light interception in a crop canopy and influence overall photosynthesis and yield. Optimized plant architecture renders modern maize hybrids(Zea mays L.) more productive, owing to their tolerance of high plant densities. To determine physiological and yield response to maize plant architecture, a field experiment was conducted in 2010 and 2011. With the modern maize hybrid ZD958, three plant architectures, namely triangle, diamond and original plants, were included at two plant densities, 60,000 and 90,000 plants ha-1. Triangle and diamond plants were derived from the original plant by spraying the chemical regulator Jindele(active ingredients,ethephon, and cycocel) at different vegetative stages. To assess the effects of plant architecture, a light interception model was developed. Plant height, ear height, leaf size,and leaf orientation of the two regulated plant architectures were significantly reduced or altered compared with those of the original plants. On average across both plant densities and years, the original plants showed higher yield than the triangle and diamond plants,probably because of larger leaf area. The two-year mean grain yield of the original and diamond plants were almost the same at 90,000 plants ha-1(8714 vs. 8798 kg ha-1). The yield increase(up to 5%) of the diamonds plant at high plant densities was a result of increased kernel number per ear, which was likely a consequence of improved plant architecture in the top and middle canopy layers. The optimized light distribution within the canopy can delay leaf senescence, especially for triangle plants. The fraction of incident radiation simulated by the interception model successfully reflected plant architecture traits. Integration of canopy openness is expected to increase the simulation accuracy of the present model. Maize plant architecture with increased tolerance of high densities is probably dependent on the smaller but flatter leaves around the ear.展开更多
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions.Photobiomodulation can promote neurogenesis and elici...Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions.Photobiomodulation can promote neurogenesis and elicit anti-apoptotic,antiinflammatory and antioxidative responses.Its therapeutic effects have been demonstrated in studies on neurological diseases,peripheral nerve injuries,pain relief and wound healing.We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019.The NCBI PubMed database,EMBASE database,Cochrane Library and ScienceDirect database were searched.We reviewed 95 papers and analyzed.Photobiomodulation has wide applicability in the treatment of stroke,traumatic brain injury,Parkinson’s disease,Alzheimer’s disease,major depressive disorder,and other diseases.Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases.However,additional studies with adequate sample size are needed to optimize treatment parameters.展开更多
The Mesozoic Yanshanian Movement affected the tectonic evolution of the North China Craton(NCC).It is proposed that Mesozoic cratonic destruction peaked~125 Ma,possibly influenced by subduction of the western Pacific ...The Mesozoic Yanshanian Movement affected the tectonic evolution of the North China Craton(NCC).It is proposed that Mesozoic cratonic destruction peaked~125 Ma,possibly influenced by subduction of the western Pacific Plate beneath the Euro-Asian Plate in the Early Cretaceous.The southern Jinzhou area in the eastern block of the NCC preserves clues about the tectonic events and related geological resources.Studies of the regional stress field evolution from the Cretaceous to the Cenozoic can enhance our understanding of the tectonics and dynamics of the NCC.Borehole image logging technology was used to identify and collect attitudes of tensile fractures from 11 boreholes;these were subdivided into four groups according to dip direction,i.e.,NNW-SSE,NWW-SEE,W-E and NE-SW.The development of these fractures was controlled primarily by the regional tectonic stress field;temperature,lithology,and depth contributed to some extent.In 136-125 Ma in the Early Cretaceous,the area was characterized by extension that was oriented NNW-SSE and NWW-SEE;from 125-101 Ma the extension was oriented W-E;after 101 Ma it was NE-SW.This counterclockwise trend has persisted to the present,probably related to oblique subduction of the Pacific Plate,and is characterized by ongoing extension that is nearly N-S-oriented and NEE-SWW-oriented compression.展开更多
基金Supported by National Natural Science Foundation of China,No.81960136the Science and Technology Department of Yunnan Province,No.202101AT070243.
文摘BACKGROUND In this study,we retrospectively analysed macrophage infiltration and podocyte injury in three patients with diffuse proliferative lupus nephritis(LN)who un-derwent repeated renal biopsy.CASE SUMMARY Clinical data of three diffuse proliferative LN patients with different pathological characteristics(case 1 was LN IV-G(A),case 2 was LN IV-G(A)+V,and case 3 was LN IV-G(A)+thrombotic microangiopathy)were reviewed.All patients underwent repeated renal biopsies 6 mo later,and renal biopsy specimens were studied.Macrophage infiltration was assessed by CD68 expression detected by immunohistochemical staining,and an immunofluorescence assay was used to detect podocin expression to assess podocyte damage.After treatment,Case 1 changed to LN III-(A),Case 2 remained as type V LN lesions,and Case 3,which changed to LN IV-S(A),had the worst prognosis.We observed reduced macro-phage infiltration after therapy.However,two of the patients with active lesions after treatment still showed macrophage infiltration in the renal interstitium.Before treatment,the three patients showed discontinuous expression of podocin.Notably,the integrity of podocin was restored after treatment in Case 1.CONCLUSION It may be possible to reverse podocyte damage and decrease the infiltrating ma-crophages in LN patients through effective treatment.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000600)the National Natural Science Foundation of China(Grant No.32070376)。
文摘In plants,the lysine and histidine transporter(LHT)family represent a class of proteins that mediate the uptake,translocation,and utilization of amino acids.The tea plant(Camellia sinensis)is a perennial evergreen with a relatively high level of amino acids.However,systematic identification and molecular characterization of the LHT gene family has rarely been reported in tea plants.In this study,22 CsLHTs were identified from the‘Shuchazao’genome and classified into two groups.The modeled three-dimensional structure and the conserved domains presented a high similarity among the LHTs proteins.Moreover,it was predicted that a few genes were conserved through the analysis of the physiochemical characters,structures and cis-elements in promoters.The expression patterns in tea plants revealed that CsLHT7 was mainly expressed in the roots,and CsLHT4 and CsLHT11 exhibited relatively high expression in both the roots and leaves.Moreover,the expression of all three genes could be induced by organic nitrogen.Additionally,heterogeneous expression of CsLHT4,CsLHT7 and CsLHT11 in Arabidopsis thaliana decreased the aerial parts biomass compared with that in WT plants while significantly increased the rosette biomass only for CsLHT11transgenic plants versus WT plants.Overall,our results provide fundamental information about CsLHTs and potential genes in N utilization for further analysis in tea plants.
基金partially supported by the National Natural Science Foundations of China (Grant No.11901317)the China Postdoctoral Science Foundation (Grant No.2020M680480)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.2023MS078)the Beijing Natural Science Foundation (Grant No.1232021)。
文摘Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory.
基金supported by the project of National Key Research and Development Program of China(2016YFD0300301 and 2017YFD0300603)The 2115 Talent Development Program of China Agricultural University。
文摘Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs.
基金the National Natural Science Foundation of China(41904116,41874156,42074167 and 42204135)the Natural Science Foundation of Hunan Province(2020JJ5168)the China Postdoctoral Science Foundation(2021M703629)for their funding of this research.
文摘As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.
基金jointly supported by the National Key Research and Development Program of China (Grant No. 2021YFD1000401)the National Natural Science Foundation of China (Grant No.32070376)+1 种基金the Program of Horticultural Crop Germplasm Resources in Hubei Province (Grant No. 2021DFE016)the Key Technology of Safety Production to Improve Tea Quality and Efficiency in Three Gorges Reservoir Area。
文摘Many attentions have been previously focused to identify the multiple biochemical components related to tea quality and health benefits,however, the natural variation of biochemical components present in tea germplasm has not been adequately evaluated. In this study, the main biochemical components, leaf morphological and yield characteristics were evaluated for four rounds of tea leaves in a panel of 87 elite tea cultivars suitable for black, green, or oolong tea. Significant variations were observed among the tea cultivars, as well as seasonal differences in the levels of the free amino acid(FAA), caffeine(CAF), tea polyphenols(TP), water extract(WE) and TP to FAA ratio(TP/FAA). Results showed that the average levels of FAA showed a seasonal change, with the highest level of 4.0% in the 1st spring tea in the cultivars suitable for green tea and the lowest of 3.2% in summer tea in the cultivars suitable for black tea. The average CAF content was highest 3.2% in the cultivars suitable for oolong tea in the 1st spring and the lowest 2.5% in the cultivars suitable for green tea in summer. Limited seasonal and varietal variations were noticed in the average levels of WE among the three categories of tea. In addition, significant natural variation of the morphological characteristics, bud length varying from 2.5 cm to 8.7 cm, bud density from 190.3 buds · m-2to 1 730.3 buds · m-2, mature leaves biomass from 128.4 kg · hm-2to 2 888.4 kg · hm-2, and yield component traits of 100 buds(one bud with two leaves) dry weight from 3.7 g to37.7 g, tea yield/round from 444.6 kg · hm-2to 905.3 kg · hm-2, were observed. The aim of our evaluation was not only to identify the advantages of seasonal and clonal variations but also to provide a new viewpoint for their further application. Representative accessions were selected from the germplasm to promote the establishment of an inherent biochemical constituent expressing the quality of black, green, and oolong tea. The findings might be utilized to establish early selection criteria to enhance the tea breeding and production program.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited (Grant Nos.2022YJ177 and 2022YJ088).
文摘Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.
基金This work has been supported by grants from the Taishan Scholars Program(TSQN201812015)the Program for Multidisciplinary Research and Innovation Team of Young Scholars at Shandong University(2020QNQT007).
文摘Objective:The aim of this study is to explore the active ingredients and mechanism of action of danhong injection(DHI)in treating myeloproliferative neoplasms using network pharmacology.Methods:The TCMSP platform and relevant literature were used to search for the active ingredients and targets of Radix Salviae and Carthami Flos in DHI.Disease targets related to myeloproliferative neoplasms were obtained from the GEO database,GeneCards,and DisGeNET database.The queried component targets were normalized using the UniProt database.Potential targets were identified by constructing protein-protein interactions networks using STRING 11.5 and visualized and analyzed using Cytoscape 3.9.1.GO and KEGG analysis were performed using the Metascape platform,and visualization was done using the built-in plug-in CluoGO or SangerBox platforms with Cytoscape 3.9.1.Results:The active ingredients of DHI for treating myeloproliferative neoplasms mainly consist of flavonoids and o-benzoquinones,including quercetin,luteolin,kaempferol,stigmasterol,tanshinone iia,cryptotanshinone,beta-carotene,2-isopropyl-8-methylphenanthrene-3,4-dione,and neocryptotanshinone ii.The potential targets are JUN,TP53,STAT3,AKT1,MAPK1,RELA,TNF,MAPK14,IL6,and FOS.The relevant signaling pathways involved are mainly TNFαsignaling pathway,PI3K-Akt signaling pathway,apoptosis,IL-17 signaling pathway,cellular senescence,MAPK signaling pathway,p53 signaling pathway,JAK-STAT signaling pathway,and NF-kappa B signaling.Conclusions:DHI acts mainly through flavonoids and o-benzoquinones to treat myeloproliferative neoplasms in a multi-targeted and multi-pathway manner.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51978147,52378046).
文摘This study establishes an evaluation and optimization framework for the public transit network based on social network analysis and a greedy algorithm,aiming to explore a quantitative approach to improving access to urban parks through public transit optimization.Social network analysis and the ArcGIS platform are used to build a public transit network model within Nanjing Old City and analyze its overall network structure characteristics.The study also focuses on a method to improve the convenience of reaching regional and citylevel parks by public transit by increasing access and connecting points accordingly.A greedy algorithm is introduced to generate an optimized solution for improving public transit accessibility to regional and city-level parks,consequently enhancing their utilization.The major findings include:(1)The greedy algorithm effectively enhances the performance of the public transit network,but its benefits gradually diminish as more stations are added.(2)Strategically adding stations enhances the performance of most public transit access points,creating efficient pathways for other stations to directly reach these access points and enter regional and city-level parks.(3)The optimized public transit network model offers guidance for the planning and layout of regional and city-level parks.The site selection for new parks should prioritize establishing connections with the“hubs”in the public transit network.The proposed optimization of the public transit network in this study is specific to a single type of urban park,but subsequent research could be conducted to extend the optimization of public transit accessibility around more urban public resources.
文摘Journal of Plant Ecology(JPE)was established in 2008 and is sponsored by the Botanical Society of China and the Institute of Botany,Chinese Academy of Sciences.Published by Oxford University Press,UK,JPE encompasses a wide range of article types within the expansive field of plant ecology.As of July 2021,JPE has transitioned to fully Open Access,ensuring unrestricted access to the full text for both readers and authors.This shift enhances the journal’s role as a crucial platform for plant ecologists worldwide to disseminate their research findings.
基金supported by the China Agriculture Research System (No. CARS-02-26)
文摘The size and distribution of leaf area determine light interception in a crop canopy and influence overall photosynthesis and yield. Optimized plant architecture renders modern maize hybrids(Zea mays L.) more productive, owing to their tolerance of high plant densities. To determine physiological and yield response to maize plant architecture, a field experiment was conducted in 2010 and 2011. With the modern maize hybrid ZD958, three plant architectures, namely triangle, diamond and original plants, were included at two plant densities, 60,000 and 90,000 plants ha-1. Triangle and diamond plants were derived from the original plant by spraying the chemical regulator Jindele(active ingredients,ethephon, and cycocel) at different vegetative stages. To assess the effects of plant architecture, a light interception model was developed. Plant height, ear height, leaf size,and leaf orientation of the two regulated plant architectures were significantly reduced or altered compared with those of the original plants. On average across both plant densities and years, the original plants showed higher yield than the triangle and diamond plants,probably because of larger leaf area. The two-year mean grain yield of the original and diamond plants were almost the same at 90,000 plants ha-1(8714 vs. 8798 kg ha-1). The yield increase(up to 5%) of the diamonds plant at high plant densities was a result of increased kernel number per ear, which was likely a consequence of improved plant architecture in the top and middle canopy layers. The optimized light distribution within the canopy can delay leaf senescence, especially for triangle plants. The fraction of incident radiation simulated by the interception model successfully reflected plant architecture traits. Integration of canopy openness is expected to increase the simulation accuracy of the present model. Maize plant architecture with increased tolerance of high densities is probably dependent on the smaller but flatter leaves around the ear.
文摘Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions.Photobiomodulation can promote neurogenesis and elicit anti-apoptotic,antiinflammatory and antioxidative responses.Its therapeutic effects have been demonstrated in studies on neurological diseases,peripheral nerve injuries,pain relief and wound healing.We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019.The NCBI PubMed database,EMBASE database,Cochrane Library and ScienceDirect database were searched.We reviewed 95 papers and analyzed.Photobiomodulation has wide applicability in the treatment of stroke,traumatic brain injury,Parkinson’s disease,Alzheimer’s disease,major depressive disorder,and other diseases.Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases.However,additional studies with adequate sample size are needed to optimize treatment parameters.
基金supported by the National Natural Science Foundation of China(41574088)。
文摘The Mesozoic Yanshanian Movement affected the tectonic evolution of the North China Craton(NCC).It is proposed that Mesozoic cratonic destruction peaked~125 Ma,possibly influenced by subduction of the western Pacific Plate beneath the Euro-Asian Plate in the Early Cretaceous.The southern Jinzhou area in the eastern block of the NCC preserves clues about the tectonic events and related geological resources.Studies of the regional stress field evolution from the Cretaceous to the Cenozoic can enhance our understanding of the tectonics and dynamics of the NCC.Borehole image logging technology was used to identify and collect attitudes of tensile fractures from 11 boreholes;these were subdivided into four groups according to dip direction,i.e.,NNW-SSE,NWW-SEE,W-E and NE-SW.The development of these fractures was controlled primarily by the regional tectonic stress field;temperature,lithology,and depth contributed to some extent.In 136-125 Ma in the Early Cretaceous,the area was characterized by extension that was oriented NNW-SSE and NWW-SEE;from 125-101 Ma the extension was oriented W-E;after 101 Ma it was NE-SW.This counterclockwise trend has persisted to the present,probably related to oblique subduction of the Pacific Plate,and is characterized by ongoing extension that is nearly N-S-oriented and NEE-SWW-oriented compression.