期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Sb_(2)Se_(3)as a bottom cell material for efficient perovskite/Sb_(2)Se_(3)tandem solar cells
1
作者 Zhiyuan Cai Jia Sun +5 位作者 Huiling Cai Yuehao Gu Rongfeng Tang Changfei Zhu paifeng luo Tao Chen 《Energy Materials and Devices》 2024年第1期54-63,共10页
Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom ce... Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom cell absorber material in tandem solar cells.More importantly,Sb_(2)Se_(3)solar cells exhibit excellent stability with nontoxic compositional elements.The band gap of organic-inorganic hybrid perovskite is tunable over a wide range.In this work,we demonstrate for the first time a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response.By adjusting the thickness of the transparent electrode layer of the top cell,the wide-band-gap perovskite top solar cell achieves an efficiency of 17.88%,while the optimized antimony selenide bottom cell delivers a power conversion efficiency of 7.85%by introducing a double electron transport layer.Finally,the four-termi-nal tandem solar cell achieves an impressive efficiency exceeding 20%.This work provides a new tandem device structure and demonstrates that antimony selenide is a promising absorber material for bottom cell applications in tandem solar cells. 展开更多
关键词 tandem solar cells four-terminal antimony selenide PEROVSKITE transparent conducting electrode
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部