Leaf extract of medicinally important plant Ocimurn sanctum (O. sanctum) has been used for the synthesis of nickel nanoparticles (NiGs) and extraction of quercetin (Qu). Qu has been conjugated with NiGs for enha...Leaf extract of medicinally important plant Ocimurn sanctum (O. sanctum) has been used for the synthesis of nickel nanoparticles (NiGs) and extraction of quercetin (Qu). Qu has been conjugated with NiGs for enhanced anticancer effect on human breast cancer MCF-7 cells. Extracted Qu was conjugated with polyethylene glycol (PEG) coated NiGs (Qu-PEG-NiGs) which was used as carriers for breast cancer treatment. Anticancer activity of Qu-PEG-NiGs was evaluated by assessing cell viability, reactive oxygen species (ROS) production, caspase activity, mitochondrial membrane potential (MMP) and changes in nuclear morphology (staining methods). 0.85 mg of quercetin was extracted from I g of leaves with retention time (Rt) of 2.914 rain. Loading and encapsulation efficiency of quercetin onto PEG-NiGs was 15.04% and 82% respectively and Qu-PEG-NiGs has shown a sustained release of Qu of about 84% after 48 h. Qu and Qu-PEG-NiGs showed dose dependent (1.56-50 μg/mL) anticancer effect against MCF-7 cells with IC50 values of 50 and 6.25 μg/mL respectively which was mediated by oxidative stress due to ROS over-production that induced loss of mitochondrial membrane potential, capsase -9, -7 activities leading to apoptosis. The present study validates that Qu-PEG-NiGs can be used as a potential anticancer agent for cancer therapy.展开更多
文摘Leaf extract of medicinally important plant Ocimurn sanctum (O. sanctum) has been used for the synthesis of nickel nanoparticles (NiGs) and extraction of quercetin (Qu). Qu has been conjugated with NiGs for enhanced anticancer effect on human breast cancer MCF-7 cells. Extracted Qu was conjugated with polyethylene glycol (PEG) coated NiGs (Qu-PEG-NiGs) which was used as carriers for breast cancer treatment. Anticancer activity of Qu-PEG-NiGs was evaluated by assessing cell viability, reactive oxygen species (ROS) production, caspase activity, mitochondrial membrane potential (MMP) and changes in nuclear morphology (staining methods). 0.85 mg of quercetin was extracted from I g of leaves with retention time (Rt) of 2.914 rain. Loading and encapsulation efficiency of quercetin onto PEG-NiGs was 15.04% and 82% respectively and Qu-PEG-NiGs has shown a sustained release of Qu of about 84% after 48 h. Qu and Qu-PEG-NiGs showed dose dependent (1.56-50 μg/mL) anticancer effect against MCF-7 cells with IC50 values of 50 and 6.25 μg/mL respectively which was mediated by oxidative stress due to ROS over-production that induced loss of mitochondrial membrane potential, capsase -9, -7 activities leading to apoptosis. The present study validates that Qu-PEG-NiGs can be used as a potential anticancer agent for cancer therapy.