BACKGROUND Despite sharing similar pathogenic factors,cancer and coronary heart disease(CHD)occur in comparable populations at similar ages and possess similar susceptibility factors.Consequently,it is increasingly co...BACKGROUND Despite sharing similar pathogenic factors,cancer and coronary heart disease(CHD)occur in comparable populations at similar ages and possess similar susceptibility factors.Consequently,it is increasingly commonplace for patients to experience the simultaneous occurrence of cancer and CHD,a trend that is steadily rising.AIM To determine the impacts of continuing care on lung cancer patients with CHD following percutaneous coronary intervention(PCI).METHODS There were 94 lung cancer patients with CHD following PCI who were randomly assigned to the intervention group(n=38)and the control group(n=41).In the intervention group,continuing care was provided,while in the control group,routine care was provided.An evaluation of cardiac and pulmonary function,medication compliance,a 6-min walk test,and patient quality of life was performed.RESULTS Differences between the two groups were significant in left ventricular ejection fraction,6-min walk test,oxygen uptake,quality of life and medication compliance(P<0.05).In comparison with the control group,the enhancement in the intervention group was more significant.The intervention group had more patients with high medication compliance than the control group,with a statistically significant difference(P<0.05).CONCLUSION After undergoing PCI,lung patients with CHD could benefit from continued care in terms of cardiac and pulmonary function,medications compliance,and quality of life.展开更多
Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti...Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.展开更多
Nano-targeted delivery systems have been widely used for breast tumor drug delivery.Estrogen receptors are considered to be significant drug delivery target receptors due to their overexpression in a variety of tumor ...Nano-targeted delivery systems have been widely used for breast tumor drug delivery.Estrogen receptors are considered to be significant drug delivery target receptors due to their overexpression in a variety of tumor cells.However,targeted ligands have a significant impact on the safety and effectiveness of active delivery systems,limiting the clinical transformation of nanoparticles.Phytoestrogens have shown good biosafety characteristics and some affinity with the estrogen receptor.In the present study,molecular docking was used to select tanshinone IIA(Tan IIA)among phytoestrogens as a target ligand to be used in nanodelivery systems with somemodifications.Modified Tan IIA(Tan-NH2)showed a good biosafety profile and demonstrated tumor-targeting,anti-tumor and anti-tumor metastasis effects.Moreover,the ligand was utilized with the anti-tumor drug Dox-loaded mesoporous silica nanoparticles via chemical modification to generate a nanocomposite Tan-Dox-MSN.Tan-Dox-MSN had a uniform particle size,good dispersibility and high drug loading capacity.Validation experiments in vivo and in vitro showed that it also had a better targeting ability,anti-tumor effect and lower toxicity in normal organs.These results supported the idea that phytoestrogens with high affinity for the estrogen receptor could improve the therapeutic efficacy of nano-targeted delivery systems in breast tumors.展开更多
Objective:Inhibition of tumor angiogenesis has become a new targeted tumor therapy.In this study,we established a micellar carrier with a tumor neovascularization-targeting effect modified by the neovascularization-ta...Objective:Inhibition of tumor angiogenesis has become a new targeted tumor therapy.In this study,we established a micellar carrier with a tumor neovascularization-targeting effect modified by the neovascularization-targeting peptide NGR.Methods:The targeted polymer poly(ethylene glycol)-b-poly(lactide-co-glycolide)(PEG-PLGA)modified with Asn–Gly–Arg(NGR)peptide was prepared and characterized by 1H nuclear magnetic resonance and Fourier-transform infrared spectrometry.NGR-PEG-PLGA was used to construct curcumin(Cur)-loaded micelles by the solvent evaporation method.The physicochemical properties of the micelles were also investigated.Additionally,we evaluated the antitumor efficacy of the polymer micelles(PM)using in vitro cytology experiments and in vivo animal studies.Results:The particle size of Cur-NGR-PM was 139.70±2.51 nm,and the drug-loading capacity was 14.37±0.06%.In vitro cytological evaluation showed that NGR-modified micelles showed higher cellular uptake through receptor-mediated endocytosis pathways than did unmodified micelles,leading to the apoptosis of tumor cells.Then,in vivo antitumor experiments showed that the modified micelles significantly inhibited tumor growth and were safe.Conclusions:NGR-modified micelles significantly optimized the therapeutic efficacy of Cur.This strategy offers a viable avenue for cancer treatment.展开更多
Baicalein(BE) is one of the main active flavonoids representing the variety of pharmacological effects including anticancer, anti-inflammatory and cardiovascular protective activities, but it's very low solubility...Baicalein(BE) is one of the main active flavonoids representing the variety of pharmacological effects including anticancer, anti-inflammatory and cardiovascular protective activities, but it's very low solubility, dissolution rate and poor oral absorption limit the therapeutic applications. In this work, a nano-cocrystal strategy was successfully applied to improve the dissolution rate and bioavailability of BE. Baicalein-nicotinamide(BE-NCT) nanococrystals were prepared by high pressure homogenization and evaluated both in vitro and in vivo. Physical characterization results including scanning electron microscopy, dynamic light scattering, powder X-ray diffraction and differential scanning calorimetry demonstrated that BE-NCT nano-cocrystals were changed into amorphous state with mean particle size of 251.53 nm. In the dissolution test, the BE-NCT nano-cocrystals performed 2.17-fold and 2.54-fold enhancement than BE coarse powder in FaSSIF-V2 and FaSSGF. Upon oral administration, the integrated AUC0-t of BE-NCT nano-cocrystals(6.02-fold) was significantly higher than BE coarse powder(1-fold), BE-NCT cocrystals(2.87-fold) and BE nanocrystals(3.32-fold). Compared with BE coarse powder, BE-NCT cocrystals and BE nanocrystals, BENCT nano-cocrystals possessed excellent performance both in vitro and in vivo evaluations.Thus, it can be seen that nano-cocrystal is an appropriate novel strategy for improving dissolution rate and bioavailability of poor soluble natural products such as BE.展开更多
Labrasol, as a non-ionic surfactant, can enhance the permeation and absorption of drugs, and is extensively used in topical, transdermal, and oral pharmaceutical preparations as an emulsifier and absorption enhancer. ...Labrasol, as a non-ionic surfactant, can enhance the permeation and absorption of drugs, and is extensively used in topical, transdermal, and oral pharmaceutical preparations as an emulsifier and absorption enhancer. Recent studies in our laboratory have indicated that labrasol has a strong absorption enhancing effect on different types of drugs in vitro and in vivo. This study was performed to further elucidate the action mechanism of labrasol on the corneal penetration. In this research, the fluorescein sodium, a marker of passive paracellular transport of tight junction, was selected as the model drug to assess the effect of labrasol on in vitro corneal permeability. To investigate the continuous and real-time influence of labrasol on the membrane permeability and integrity, the Ussing chamber system was applied to monitor the electrophysiological parameters. And, furthermore, we elucidated the effect of labrasol on excised cornea at the molecular level by application of RT-PCR, Western blot, and immunohistochemical staining. The results indicated that labrasol obviously enhance the transcorneal permeability of fluorescein sodium, and the enhancement was realized by interacting with and down-regulating the associated proteins, such as Factin, claudin-1 and β-catenin, which were contributed to cell-cell connections, respectively.展开更多
Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Theref...Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.展开更多
Atherosclerosis or fibrosis and cirrhosis undergo chronic inflammation associated with the adhesion between neutrophils and endothelial cells(ECs)that is mediated by their respective cellular adhesive molecules on sti...Atherosclerosis or fibrosis and cirrhosis undergo chronic inflammation associated with the adhesion between neutrophils and endothelial cells(ECs)that is mediated by their respective cellular adhesive molecules on stiffened blood vessel wall or extracellular matrix(ECM)under shear flow[1-3].However,the mechanical dependence of calcium flux and trail formation in neutrophils remains unclear yet in these processes.First,the effect of substrate stiffness through ECs on neutrophil calcium spike was quantified when the individual neutrophils adhered to EC monolayer pre-placed onto stiffness-varied polyacrylamide(PA)substrate(5 or 34.88 kPa)or glass surface.Our data indicated that E-/P-selectins and ICAM-1s on HUVECs and b2-integrins,PSGL-1s,and CD44s on neutrophils were all involved in mediating neutrophil calcium spike in a stiffness-dependent manner,in which the increase of substrate stiffness enhanced the calcium intensity and spike number.Such stiffness-dependent calcium response is associated with selectin-induced b2-integrin activation through Syk/Src signaling pathway and the F-actin/myosin II function.Moreover,tension-activated calcium ion channels displayed critical roles in initiating stiffness-dependent calcium spike [4].Second,the trail formation of neutrophils to ECs monolayer pre-placed onto the same PA substrate were also tested under shear flow.Live fluorescence imaging showed that neutrophils are able to form long membrane tethers during migration and subsequently leave behind membranous long-lasting trails under shear,which are enriched in LFA-1,Mac-1,and CD44.Moreover,the formation of the trails was inhibited by blocking LFA-1s and Mac-1s,suggesting an important role forβ2-integrins in the trial formation.The recruitment of monocytes was inhibited when pre-blocking ICAM-1s on flowing monocytes,indicating that the neutrophil’s trails employβ2-integrin-ICAM-1 binding to recruit the monocytes.Intriguingly,both the length and the area of the trails increase with increasing substrate stiffness,resulting in the enhanced monocyte recruitment.Inhibition of actin binding protein Arp2/3 impairs the trail formation and dramatically decreases the neutrophil-dependent monocyte recruitment.These data provide an insight into understanding how stiffening of vascular wall could regulate the calcium flux of adhered neutrophils and thus the immune responses in atherosclerosis.They also imply that local mechanical microenvironment is remodeled with the migration of neutrophils,leaving the trails presented to induce and regulate monocyte recruitment.All the results are meaningful in elucidating the occurrence and development of atherosclerosis or fibrosis from the viewpoint of mechanotransduction and also for the potential intervention of cardiovascular disease progress.展开更多
The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this ...The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement.展开更多
Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred p...Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred polarization can be produced from a set of multiple polarization states,thus improving the quality of the communication link.This paper presents a new concept of a polarization programmable reconfigurable antenna array that consists of a number of polarization reconfigurable antenna elements with a finite number of possible polarization states.By employing a new optimization strategy and programming the polarization states of all the array elements,we demonstrate that it is possible to realize any desired LP in the vectorial array radiation pattern with accurate control of sidelobe and crosspolarization levels(XPLs),thereby achieving the desired polarization to perfectly match that of the required communications signal.Both numerical and experimental results are provided to prove the concept,and they agree well with each other.展开更多
Conductive fibers(CFs)with features of high conductivity,stretchability,self-healability,and electromechanical stability are key components of the increasingly popular wearable electronics.However,since the lack of st...Conductive fibers(CFs)with features of high conductivity,stretchability,self-healability,and electromechanical stability are key components of the increasingly popular wearable electronics.However,since the lack of structural design of conductive network and interfacial interaction between soft polymer and conductive additives,it is still hard to enable CFs to meet above requirements.Here,we describe a facial drawing method from a hydrogel reservoir which is remolded into ultrathin and stretchable CFs with excellent multi-responsive self-healability.The hydrogel reservoir was fabricated in synergy of an ice-templating method and in situ polymerization using the assembled framework as a crosslinker.Relying on the effective fabrication mechanism,the diameter of CFs could be well-tuned from 90 to 400μm by adjusting the dipping depth of the glass rod,accompanied with conductivity increased from 0.75 to 2.5 S/m.Since the hierarchical network structure was well maintained in the CFs,professional performances have been proved on the stretchability and electromechanical stability.The presence of massive hydrogen bonding and Ag–S bond enabled the CFs with excellent self-healability under the conditions of contact,electric field,and near infrared light,respectively.Excitingly,the CFs with high sensing property could be integrated into an advanced textile sensor through an effective healing-induced integration strategy,demonstrating its great potentials as superior two-dimensional(2D)electronic skins.展开更多
In this study,we prepared cross-linked enzyme crystals(CLECs)of papain to further broaden the application of the enzyme with high activity in extreme environments.Initially,papain crystals were successfully obtained b...In this study,we prepared cross-linked enzyme crystals(CLECs)of papain to further broaden the application of the enzyme with high activity in extreme environments.Initially,papain crystals were successfully obtained based on the micro-batch,batch,and expanded batch crystallization experiments.Specifically,ammonium sulfate and polyethylene glycol 6000(PEG6000)were synergistically used as the precipitants,while L-cysteine was applied to enhance the activity of papain.Furthermore,the interaction between L-cysteine and papain was modeled by molecular docking technique.It was found that L-cysteine could form a hydrogen bond with aspartic acid residue(Asp)at site 158,and the electrostatic attraction with lysine residue(Lys)at site 156 was also quite obvious.Then the enzyme crystals were cross-linked by glutaraldehyde at optimized conditions.The papain CLECs were identified by various methods,and it was found that the thermal stability and enzymatic activity both increased compared to the raw enzyme.More importantly,it could be applied at more rigorous conditions,for example,pH of 4.展开更多
文摘BACKGROUND Despite sharing similar pathogenic factors,cancer and coronary heart disease(CHD)occur in comparable populations at similar ages and possess similar susceptibility factors.Consequently,it is increasingly commonplace for patients to experience the simultaneous occurrence of cancer and CHD,a trend that is steadily rising.AIM To determine the impacts of continuing care on lung cancer patients with CHD following percutaneous coronary intervention(PCI).METHODS There were 94 lung cancer patients with CHD following PCI who were randomly assigned to the intervention group(n=38)and the control group(n=41).In the intervention group,continuing care was provided,while in the control group,routine care was provided.An evaluation of cardiac and pulmonary function,medication compliance,a 6-min walk test,and patient quality of life was performed.RESULTS Differences between the two groups were significant in left ventricular ejection fraction,6-min walk test,oxygen uptake,quality of life and medication compliance(P<0.05).In comparison with the control group,the enhancement in the intervention group was more significant.The intervention group had more patients with high medication compliance than the control group,with a statistically significant difference(P<0.05).CONCLUSION After undergoing PCI,lung patients with CHD could benefit from continued care in terms of cardiac and pulmonary function,medications compliance,and quality of life.
基金supported in part by the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.24A560021)in part by the Henan Postdoctoral Foundation(Grant No.202102015).
文摘Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.
基金supported by the Tianjin University of Traditional Chinese Medicine Scientific Research Project for the NewTeacher[grant number:XJS2022212]The Science and Technology Program of Tianjin[grant number:21YJDJC00020]The Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine[grant number:22HHZYSS00005].
文摘Nano-targeted delivery systems have been widely used for breast tumor drug delivery.Estrogen receptors are considered to be significant drug delivery target receptors due to their overexpression in a variety of tumor cells.However,targeted ligands have a significant impact on the safety and effectiveness of active delivery systems,limiting the clinical transformation of nanoparticles.Phytoestrogens have shown good biosafety characteristics and some affinity with the estrogen receptor.In the present study,molecular docking was used to select tanshinone IIA(Tan IIA)among phytoestrogens as a target ligand to be used in nanodelivery systems with somemodifications.Modified Tan IIA(Tan-NH2)showed a good biosafety profile and demonstrated tumor-targeting,anti-tumor and anti-tumor metastasis effects.Moreover,the ligand was utilized with the anti-tumor drug Dox-loaded mesoporous silica nanoparticles via chemical modification to generate a nanocomposite Tan-Dox-MSN.Tan-Dox-MSN had a uniform particle size,good dispersibility and high drug loading capacity.Validation experiments in vivo and in vitro showed that it also had a better targeting ability,anti-tumor effect and lower toxicity in normal organs.These results supported the idea that phytoestrogens with high affinity for the estrogen receptor could improve the therapeutic efficacy of nano-targeted delivery systems in breast tumors.
基金supported by Scientific Research Project of Tianjin Municipal Education Commission (No.2019KJ080).
文摘Objective:Inhibition of tumor angiogenesis has become a new targeted tumor therapy.In this study,we established a micellar carrier with a tumor neovascularization-targeting effect modified by the neovascularization-targeting peptide NGR.Methods:The targeted polymer poly(ethylene glycol)-b-poly(lactide-co-glycolide)(PEG-PLGA)modified with Asn–Gly–Arg(NGR)peptide was prepared and characterized by 1H nuclear magnetic resonance and Fourier-transform infrared spectrometry.NGR-PEG-PLGA was used to construct curcumin(Cur)-loaded micelles by the solvent evaporation method.The physicochemical properties of the micelles were also investigated.Additionally,we evaluated the antitumor efficacy of the polymer micelles(PM)using in vitro cytology experiments and in vivo animal studies.Results:The particle size of Cur-NGR-PM was 139.70±2.51 nm,and the drug-loading capacity was 14.37±0.06%.In vitro cytological evaluation showed that NGR-modified micelles showed higher cellular uptake through receptor-mediated endocytosis pathways than did unmodified micelles,leading to the apoptosis of tumor cells.Then,in vivo antitumor experiments showed that the modified micelles significantly inhibited tumor growth and were safe.Conclusions:NGR-modified micelles significantly optimized the therapeutic efficacy of Cur.This strategy offers a viable avenue for cancer treatment.
文摘Baicalein(BE) is one of the main active flavonoids representing the variety of pharmacological effects including anticancer, anti-inflammatory and cardiovascular protective activities, but it's very low solubility, dissolution rate and poor oral absorption limit the therapeutic applications. In this work, a nano-cocrystal strategy was successfully applied to improve the dissolution rate and bioavailability of BE. Baicalein-nicotinamide(BE-NCT) nanococrystals were prepared by high pressure homogenization and evaluated both in vitro and in vivo. Physical characterization results including scanning electron microscopy, dynamic light scattering, powder X-ray diffraction and differential scanning calorimetry demonstrated that BE-NCT nano-cocrystals were changed into amorphous state with mean particle size of 251.53 nm. In the dissolution test, the BE-NCT nano-cocrystals performed 2.17-fold and 2.54-fold enhancement than BE coarse powder in FaSSIF-V2 and FaSSGF. Upon oral administration, the integrated AUC0-t of BE-NCT nano-cocrystals(6.02-fold) was significantly higher than BE coarse powder(1-fold), BE-NCT cocrystals(2.87-fold) and BE nanocrystals(3.32-fold). Compared with BE coarse powder, BE-NCT cocrystals and BE nanocrystals, BENCT nano-cocrystals possessed excellent performance both in vitro and in vivo evaluations.Thus, it can be seen that nano-cocrystal is an appropriate novel strategy for improving dissolution rate and bioavailability of poor soluble natural products such as BE.
文摘Labrasol, as a non-ionic surfactant, can enhance the permeation and absorption of drugs, and is extensively used in topical, transdermal, and oral pharmaceutical preparations as an emulsifier and absorption enhancer. Recent studies in our laboratory have indicated that labrasol has a strong absorption enhancing effect on different types of drugs in vitro and in vivo. This study was performed to further elucidate the action mechanism of labrasol on the corneal penetration. In this research, the fluorescein sodium, a marker of passive paracellular transport of tight junction, was selected as the model drug to assess the effect of labrasol on in vitro corneal permeability. To investigate the continuous and real-time influence of labrasol on the membrane permeability and integrity, the Ussing chamber system was applied to monitor the electrophysiological parameters. And, furthermore, we elucidated the effect of labrasol on excised cornea at the molecular level by application of RT-PCR, Western blot, and immunohistochemical staining. The results indicated that labrasol obviously enhance the transcorneal permeability of fluorescein sodium, and the enhancement was realized by interacting with and down-regulating the associated proteins, such as Factin, claudin-1 and β-catenin, which were contributed to cell-cell connections, respectively.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2014CB541602)the National Natural Science Foundation of China(Grant Nos.51677008 and 51707028)the Fundamental Research Funds of Central Universities,China(Grant No.106112015CDJXY150003)
文摘Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.
基金supported by National Natural Science Foundation of China Grant( 31627804,91642203, 11772345,91539119)Chinese Academy of Sciences Strategic Priority Research Program ( XDB22040101)Frontier Science Key Project( QYZDJ-SSWJSC018)
文摘Atherosclerosis or fibrosis and cirrhosis undergo chronic inflammation associated with the adhesion between neutrophils and endothelial cells(ECs)that is mediated by their respective cellular adhesive molecules on stiffened blood vessel wall or extracellular matrix(ECM)under shear flow[1-3].However,the mechanical dependence of calcium flux and trail formation in neutrophils remains unclear yet in these processes.First,the effect of substrate stiffness through ECs on neutrophil calcium spike was quantified when the individual neutrophils adhered to EC monolayer pre-placed onto stiffness-varied polyacrylamide(PA)substrate(5 or 34.88 kPa)or glass surface.Our data indicated that E-/P-selectins and ICAM-1s on HUVECs and b2-integrins,PSGL-1s,and CD44s on neutrophils were all involved in mediating neutrophil calcium spike in a stiffness-dependent manner,in which the increase of substrate stiffness enhanced the calcium intensity and spike number.Such stiffness-dependent calcium response is associated with selectin-induced b2-integrin activation through Syk/Src signaling pathway and the F-actin/myosin II function.Moreover,tension-activated calcium ion channels displayed critical roles in initiating stiffness-dependent calcium spike [4].Second,the trail formation of neutrophils to ECs monolayer pre-placed onto the same PA substrate were also tested under shear flow.Live fluorescence imaging showed that neutrophils are able to form long membrane tethers during migration and subsequently leave behind membranous long-lasting trails under shear,which are enriched in LFA-1,Mac-1,and CD44.Moreover,the formation of the trails was inhibited by blocking LFA-1s and Mac-1s,suggesting an important role forβ2-integrins in the trial formation.The recruitment of monocytes was inhibited when pre-blocking ICAM-1s on flowing monocytes,indicating that the neutrophil’s trails employβ2-integrin-ICAM-1 binding to recruit the monocytes.Intriguingly,both the length and the area of the trails increase with increasing substrate stiffness,resulting in the enhanced monocyte recruitment.Inhibition of actin binding protein Arp2/3 impairs the trail formation and dramatically decreases the neutrophil-dependent monocyte recruitment.These data provide an insight into understanding how stiffening of vascular wall could regulate the calcium flux of adhered neutrophils and thus the immune responses in atherosclerosis.They also imply that local mechanical microenvironment is remodeled with the migration of neutrophils,leaving the trails presented to induce and regulate monocyte recruitment.All the results are meaningful in elucidating the occurrence and development of atherosclerosis or fibrosis from the viewpoint of mechanotransduction and also for the potential intervention of cardiovascular disease progress.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51677008,51377182,51707028,and 11647098)the Fundamental Research Funds of the Central Universities,China(Grant No.106112017CDJQJ158834)the State Key Development Program for Basic Research of China(Grant No.2014CB541602)
文摘The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement.
基金supported by the National Natural Science Foundation of China(NSFC)(61871338 and 61721001)。
文摘Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred polarization can be produced from a set of multiple polarization states,thus improving the quality of the communication link.This paper presents a new concept of a polarization programmable reconfigurable antenna array that consists of a number of polarization reconfigurable antenna elements with a finite number of possible polarization states.By employing a new optimization strategy and programming the polarization states of all the array elements,we demonstrate that it is possible to realize any desired LP in the vectorial array radiation pattern with accurate control of sidelobe and crosspolarization levels(XPLs),thereby achieving the desired polarization to perfectly match that of the required communications signal.Both numerical and experimental results are provided to prove the concept,and they agree well with each other.
基金supported by the National Natural Science Foundation of China(Nos.22171066 and 21922104)the Fundamental Research Funds for the Central Universities(Nos.JZ2023YQTD0074 and JZ2021HGPA0064)the University Synergy Innovation Program of Anhui Province(No.GXXT-2019-028).
文摘Conductive fibers(CFs)with features of high conductivity,stretchability,self-healability,and electromechanical stability are key components of the increasingly popular wearable electronics.However,since the lack of structural design of conductive network and interfacial interaction between soft polymer and conductive additives,it is still hard to enable CFs to meet above requirements.Here,we describe a facial drawing method from a hydrogel reservoir which is remolded into ultrathin and stretchable CFs with excellent multi-responsive self-healability.The hydrogel reservoir was fabricated in synergy of an ice-templating method and in situ polymerization using the assembled framework as a crosslinker.Relying on the effective fabrication mechanism,the diameter of CFs could be well-tuned from 90 to 400μm by adjusting the dipping depth of the glass rod,accompanied with conductivity increased from 0.75 to 2.5 S/m.Since the hierarchical network structure was well maintained in the CFs,professional performances have been proved on the stretchability and electromechanical stability.The presence of massive hydrogen bonding and Ag–S bond enabled the CFs with excellent self-healability under the conditions of contact,electric field,and near infrared light,respectively.Excitingly,the CFs with high sensing property could be integrated into an advanced textile sensor through an effective healing-induced integration strategy,demonstrating its great potentials as superior two-dimensional(2D)electronic skins.
基金supported by the Natural Science Foundation of Hebei Province(grant Nos.B2020202015,B2020202066)National Natural Science Foundation of China(grant Nos.21878066,22008050).
文摘In this study,we prepared cross-linked enzyme crystals(CLECs)of papain to further broaden the application of the enzyme with high activity in extreme environments.Initially,papain crystals were successfully obtained based on the micro-batch,batch,and expanded batch crystallization experiments.Specifically,ammonium sulfate and polyethylene glycol 6000(PEG6000)were synergistically used as the precipitants,while L-cysteine was applied to enhance the activity of papain.Furthermore,the interaction between L-cysteine and papain was modeled by molecular docking technique.It was found that L-cysteine could form a hydrogen bond with aspartic acid residue(Asp)at site 158,and the electrostatic attraction with lysine residue(Lys)at site 156 was also quite obvious.Then the enzyme crystals were cross-linked by glutaraldehyde at optimized conditions.The papain CLECs were identified by various methods,and it was found that the thermal stability and enzymatic activity both increased compared to the raw enzyme.More importantly,it could be applied at more rigorous conditions,for example,pH of 4.