In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environm...In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environmental variables for this nematode are unclear.Under the current climate scenario,we predicted the potential geographic distributions of M.enterolobii worldwide and in China using a Maximum Entropy(MaxEnt)model with the occurrence data of this species.Furthermore,the potential distributions of M.enterolobii were projected under three future climate scenarios(BCC-CSM2-MR,CanESM5 and CNRM-CM6-1)for the periods 2050s and 2090s.Changes in the potential distribution were also predicted under different climate conditions.The results showed that highly suitable regions for M.enterolobii were concentrated in Africa,South America,Asia,and North America between latitudes 30°S to 30°N.Bio16(precipitation of the wettest quarter),bio10(mean temperature of the warmest quarter),and bio11(mean temperature of the coldest quarter)were the variables contributing most in predicting potential distributions of M.enterolobii.In addition,the potential suitable areas for M.enterolobii will shift toward higher latitudes under future climate scenarios.This study provides a theoretical basis for controlling and managing this nematode.展开更多
We demonstrate the extreme ultraviolet free induction decay emission that can be significantly enhanced by employing isolated attosecond pulses.The near infrared pulses are applied to excite the neon atoms into Rydber...We demonstrate the extreme ultraviolet free induction decay emission that can be significantly enhanced by employing isolated attosecond pulses.The near infrared pulses are applied to excite the neon atoms into Rydberg states coherently,and isolated attosecond pulses are used to manipulate populations of the Rydberg states and the subsequent free induction decay process.The time resolved experimental measurement of dependence of the resonance emission yield would help to understand the buildup dynamics of population of excited states.The enhancement assisted by attosecond pulses can serve as a mechanism to develop high-flux extreme ultraviolet light sources.展开更多
High-order harmonics are ideal probes to resolve the attosecond dynamics of strong-field recollision processes.An easy-to-implement phase mask is utilized to covert the Gaussian beam to TEM01 transverse electromagneti...High-order harmonics are ideal probes to resolve the attosecond dynamics of strong-field recollision processes.An easy-to-implement phase mask is utilized to covert the Gaussian beam to TEM01 transverse electromagnetic mode,allowing the realization of two-source interferometry of high-order harmonics.We experimentally measure the intensity dependence of dipole phase directly with high-order harmonic interferometry,in which the driving laser intensity can be precisely adjusted.The classical electron excursion simulations reproduce the experimental findings quite well,demonstrating that Coulomb potential plays subtle roles on movement of electrons for harmonics near the ionization threshold.This work is of great importance for precision measurements of ultrafast dynamics in strong-field physics.展开更多
基金supported by the Key R&D Project of Shaanxi Province,China(2020ZDLNY07-06)the Science and Technology Program of Shaanxi Academy of Sciences(2022k-11).
文摘In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environmental variables for this nematode are unclear.Under the current climate scenario,we predicted the potential geographic distributions of M.enterolobii worldwide and in China using a Maximum Entropy(MaxEnt)model with the occurrence data of this species.Furthermore,the potential distributions of M.enterolobii were projected under three future climate scenarios(BCC-CSM2-MR,CanESM5 and CNRM-CM6-1)for the periods 2050s and 2090s.Changes in the potential distribution were also predicted under different climate conditions.The results showed that highly suitable regions for M.enterolobii were concentrated in Africa,South America,Asia,and North America between latitudes 30°S to 30°N.Bio16(precipitation of the wettest quarter),bio10(mean temperature of the warmest quarter),and bio11(mean temperature of the coldest quarter)were the variables contributing most in predicting potential distributions of M.enterolobii.In addition,the potential suitable areas for M.enterolobii will shift toward higher latitudes under future climate scenarios.This study provides a theoretical basis for controlling and managing this nematode.
基金the National Key Research and Development Program of China(Grant No.2019YFA0307703)the National Natural Science Foundation of China(Grant Nos.11974426 and 12234020)。
文摘We demonstrate the extreme ultraviolet free induction decay emission that can be significantly enhanced by employing isolated attosecond pulses.The near infrared pulses are applied to excite the neon atoms into Rydberg states coherently,and isolated attosecond pulses are used to manipulate populations of the Rydberg states and the subsequent free induction decay process.The time resolved experimental measurement of dependence of the resonance emission yield would help to understand the buildup dynamics of population of excited states.The enhancement assisted by attosecond pulses can serve as a mechanism to develop high-flux extreme ultraviolet light sources.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0307703)the National Natural Science Foundation of China(Grant Nos.12234020 and 11974426)。
文摘High-order harmonics are ideal probes to resolve the attosecond dynamics of strong-field recollision processes.An easy-to-implement phase mask is utilized to covert the Gaussian beam to TEM01 transverse electromagnetic mode,allowing the realization of two-source interferometry of high-order harmonics.We experimentally measure the intensity dependence of dipole phase directly with high-order harmonic interferometry,in which the driving laser intensity can be precisely adjusted.The classical electron excursion simulations reproduce the experimental findings quite well,demonstrating that Coulomb potential plays subtle roles on movement of electrons for harmonics near the ionization threshold.This work is of great importance for precision measurements of ultrafast dynamics in strong-field physics.