In this work, four different carbon fiber reinforced SiC-based matrix composites(C/SiC) were prepared,and microstructure evolution during laser ablation process was characterized. Laser irradiation provided a special ...In this work, four different carbon fiber reinforced SiC-based matrix composites(C/SiC) were prepared,and microstructure evolution during laser ablation process was characterized. Laser irradiation provided a special high-temperature environment up to 3500℃. For all four composites, different morphologies can be obtained in the transition region due to the oxidation of different matrices. While only needle-shaped carbon fiber and nanolayered carbon without any matrix remained in the central region, indicating that graphitization process occurred in the center, resulting from the high-temperature and low-oxygen environment in the laser process. Therefore, the laser ablation of C/SiC composites is controlled by chemical and physical erosion, and mainly by the physical erosion in the center.展开更多
基金the supports of the National Natural Science Foundation of China (Project Nos. 51725205 and 51702261)the 111 Project (B08040)
文摘In this work, four different carbon fiber reinforced SiC-based matrix composites(C/SiC) were prepared,and microstructure evolution during laser ablation process was characterized. Laser irradiation provided a special high-temperature environment up to 3500℃. For all four composites, different morphologies can be obtained in the transition region due to the oxidation of different matrices. While only needle-shaped carbon fiber and nanolayered carbon without any matrix remained in the central region, indicating that graphitization process occurred in the center, resulting from the high-temperature and low-oxygen environment in the laser process. Therefore, the laser ablation of C/SiC composites is controlled by chemical and physical erosion, and mainly by the physical erosion in the center.