期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CHCHD2 Thr61Ile mutation impairs F1F0-ATPase assembly in in vitro and in vivo models of Parkinson's disease
1
作者 Xiang Chen Yuwan Lin +14 位作者 Zhiling Zhang Yuting Tang panghai ye Wei Dai Wenlong Zhang Hanqun Liu Guoyou Peng Shuxuan Huang Jiewen Qiu Wenyuan Guo Xiaoqin Zhu Zhuohua Wu Yaoyun Kuang Pingyi Xu Miaomiao Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期196-204,共9页
Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucia... Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function. 展开更多
关键词 ATP synthase(F1F0-ATPase) coiled-coil helix coiled-coil helix domain containing 2 dopaminergic neuron mitochondrial dysfunction NEURODEGENERATION oligomycin sensitivity-conferring protein Parkinson's disease T61I mutation tyrosine hydroxylase
下载PDF
Chaperone-mediated Autophagy Regulates Cell Growth by Targeting SMAD3 in Glioma
2
作者 Hanqun Liu Yuxuan Yong +16 位作者 Xingjian Li panghai ye Kai Tao Guoyou Peng Mingshu Mo Wenyuan Guo Xiang Chen Yangfu Luo Yuwan Lin Jiewen Qiu Ziling Zhang Liuyan Ding Miaomiao Zhou Xinling Yang Lin Lu Qian Yang Pingyi Xu 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第6期637-651,共15页
Previous studies suggest that the reduction of SMAD3(mothers against decapentaplegic homolog 3)has a great impact on tumor development,but its exact pathological function remains unclear.In this study,we found that th... Previous studies suggest that the reduction of SMAD3(mothers against decapentaplegic homolog 3)has a great impact on tumor development,but its exact pathological function remains unclear.In this study,we found that the protein level of SMAD3 was greatly reduced in human-grade IV glioblastoma tissues,in which LAMP2A(lysosome-associated membrane protein type 2A)was significantly up-regulated.LAMP2A is a key ratelimiting protein of chaperone-mediated autophagy(CMA),a lysosome pathway of protein degradation that is activated in glioma.We carefully analyzed the amino-acid sequence of SMAD3 and found that it contained a pentapeptide motif biochemically related to KFERQ,which has been proposed to be a targeting sequence for CMA.In vitro,we confirmed that SMAD3 was degraded in either serum-free or KFERQ motif deleted condition,which was regulated by LAMP2A and interacted with HSC70(heat shock cognate 71 kDa protein).Using isolated lysosomes,amino-acid residues 75 and 128 of SMAD3 were found to be of importance for this process,which affected the CMA pathway in which SMAD3 was involved.Similarly,down-regulating SMAD3 or up-regulating LAMP2A in cultured glioma cells enhanced their proliferation and invasion.Taken together,these results suggest that excessive activation of CMA regulates glioma cell growth by promoting the degradation of SMAD3.Therefore,targeting the SMAD3-LAMP2Amediated CMA-lysosome pathway may be a promising approach in anti-cancer therapy. 展开更多
关键词 Glioma-SMAD3 Chaperone-mediated autophagy Cell growth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部