In advanced hepatocellular carcinoma(HCC)tissues,M2-like tumor-associated macrophages(TAMs)are in the majority and promotes HCC progression.Contrary to the pro-tumor effect of M2-like TAMs,M1-like TAMs account for a s...In advanced hepatocellular carcinoma(HCC)tissues,M2-like tumor-associated macrophages(TAMs)are in the majority and promotes HCC progression.Contrary to the pro-tumor effect of M2-like TAMs,M1-like TAMs account for a small proportion and have anti-tumor effects.Since TAMs can switch from one type to another,reprogramming TAMs may be an important treatment for HCC therapy.However,the mechanisms of phenotypic switch and reprogramming TAMs are still obscure.In this study,we analyzed differential genes in normal macrophages and TAMs,and found that loss of MANF in TAMs accompanied by high levels of downstream genes negatively regulated by MANF.MANF reprogrammed TAMs into M1 phenotype.Meanwhile,loss of MANF promoted HCC progression in HCC patients and mice HCC model,especially tumor neovascularization.Additionally,macrophages with MANF supplement suppressed HCC progression in mice,suggesting MANF supplement in macrophage was an effective treatment for HCC.Mechanistically,MANF enhanced the HSF1-HSP70-1 interaction,restricted HSF1 in the cytoplasm of macrophages,and decreased both mRNA and protein levels of HSP70-1,which in turn led to reprogramming TAMs,and suppressing neovascularization of HCC.Our study contributes to the exploration the mechanism of TAMs reprogramming,which may provide insights for future therapeutic exploitation of HCC neovascularization.展开更多
基金funded by support programs for Jun Liu,including the National Natural Science Foundation of China(82073862)Excellent Youth Talent Program of Anhui Province Natural Science Foundation(2108085Y27,China)funded by Anhui Province Natural Science Foundation(2208085MH284,China)for Xiangpeng Hu,and funded by the National Natural Science Foundation of China(U21A20345)for Yuxian Shen。
文摘In advanced hepatocellular carcinoma(HCC)tissues,M2-like tumor-associated macrophages(TAMs)are in the majority and promotes HCC progression.Contrary to the pro-tumor effect of M2-like TAMs,M1-like TAMs account for a small proportion and have anti-tumor effects.Since TAMs can switch from one type to another,reprogramming TAMs may be an important treatment for HCC therapy.However,the mechanisms of phenotypic switch and reprogramming TAMs are still obscure.In this study,we analyzed differential genes in normal macrophages and TAMs,and found that loss of MANF in TAMs accompanied by high levels of downstream genes negatively regulated by MANF.MANF reprogrammed TAMs into M1 phenotype.Meanwhile,loss of MANF promoted HCC progression in HCC patients and mice HCC model,especially tumor neovascularization.Additionally,macrophages with MANF supplement suppressed HCC progression in mice,suggesting MANF supplement in macrophage was an effective treatment for HCC.Mechanistically,MANF enhanced the HSF1-HSP70-1 interaction,restricted HSF1 in the cytoplasm of macrophages,and decreased both mRNA and protein levels of HSP70-1,which in turn led to reprogramming TAMs,and suppressing neovascularization of HCC.Our study contributes to the exploration the mechanism of TAMs reprogramming,which may provide insights for future therapeutic exploitation of HCC neovascularization.