An SN2-based photochemical strategy using dithiocarbamate anion as catalyst was developed for the activation of benzyl halides,which are extremely challenging to be applied as radical precursors in visible light photo...An SN2-based photochemical strategy using dithiocarbamate anion as catalyst was developed for the activation of benzyl halides,which are extremely challenging to be applied as radical precursors in visible light photocatalysis.With this transition-metal-free and oxidant-free protocol,the benzylation(or cyanomethylation)of various heterocycles including quinoxalin-2(1H)-ones,coumarin,2-phenyl-2H-indazole,1-methyl-5-phenylpyrazin-2(1H)-one,1-(fluoromethyl)cinnolin-4(1H)-one,and 2,4-dibenzyl-1,2,4-triazine-3,5(2H,4H)-dione could be realized(46 examples,up to 98%yield).Importantly,some biologically relevant 3-benzylquinoxalin-2(1H)-ones were also be synthesized under mild conditions.展开更多
基金support from the National Natural Science Foundation of China(Nos.21971224,22071222,22171249)111 Project(No.D20003)+3 种基金the Key Research Projects of Universities in Henan Province(No.21A150053)the Natural Science Foundation of Henan Province(No.202300410375)China Postdoctoral Science Foundation(No.2021M692906)Henan Postdoctoral Foundation(No.202003014).
文摘An SN2-based photochemical strategy using dithiocarbamate anion as catalyst was developed for the activation of benzyl halides,which are extremely challenging to be applied as radical precursors in visible light photocatalysis.With this transition-metal-free and oxidant-free protocol,the benzylation(or cyanomethylation)of various heterocycles including quinoxalin-2(1H)-ones,coumarin,2-phenyl-2H-indazole,1-methyl-5-phenylpyrazin-2(1H)-one,1-(fluoromethyl)cinnolin-4(1H)-one,and 2,4-dibenzyl-1,2,4-triazine-3,5(2H,4H)-dione could be realized(46 examples,up to 98%yield).Importantly,some biologically relevant 3-benzylquinoxalin-2(1H)-ones were also be synthesized under mild conditions.