期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enantioselective recognition based on aggregation-induced emission
1
作者 Pu Chen panpan lv +4 位作者 Chang-Sheng Guo Rui-Peng Wang Xiaolong Su Hai-Tao Feng Ben Zhong Tang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期70-80,共11页
Chirality is one of the most important features of the nature.The recognition of enantiomers plays significant roles in the field of life science,pharmaceutical analysis and food chemistry.Among various recognition me... Chirality is one of the most important features of the nature.The recognition of enantiomers plays significant roles in the field of life science,pharmaceutical analysis and food chemistry.Among various recognition methods,fluorescence spectrometry has attracted much attention of researchers thanks to its high sensitivity and easy operation.Compared with traditional fluorescent probes,chiral molecules with aggregation-induced emission(AIE)have drawn increasing interests due to their huge potential in high-efficiency chemo/biosensors and solid emitters.Chiral AIE luminogens(AIEgens)can not only discriminate two enantiomers with excellent enantioselectivity,but also show general applicability for many chiral analytes,such as chiral acids,amino acids,amines,alcohols.In this review,we mainly summarized the recent development of chiral probes with AIE properties,including chiral tetraphenylethylene(TPE)derivatives,α-cyanostilbene derivatives,Schiff base derivatives and other AIEgens.Their synthetic routes,recognition capabilities and possible working mechanisms were well discussed.It is envisioned that the present review can give some significant guidance for design and synthesis of chiral AIEgens with good enantioselectivity and inspire more readers to join the research of chiral AIE. 展开更多
关键词 Aggregation-induced emission Enantioselective recognition Fluorescent probe Host-guest interaction Tetraphenylethylene derivatives α-Cyanostilbene derivatives Schiff base derivatives
原文传递
Flexible lead-free BFO-based dielectric capacitor with large energy density,superior thermal stability,and reliable bending endurance 被引量:4
2
作者 Changhong Yang Jin Qian +7 位作者 panpan lv Haitao Wu Xiujuan Lin Kun Wang Jun Ouyang Shifeng Huang Xin Cheng Zhenxiang Cheng 《Journal of Materiomics》 SCIE EI 2020年第1期200-208,共9页
As an essential energy-stored device,the inorganic dielectric film capacitor plays an irreplaceable role in high-energy pulse power technology area.In this work,propelled by the challenge of overcoming the bottlenecks... As an essential energy-stored device,the inorganic dielectric film capacitor plays an irreplaceable role in high-energy pulse power technology area.In this work,propelled by the challenge of overcoming the bottlenecks of inflexibility and inferior energy storage density of the pure BiFeO3 films,the mica with high bendability and thermal stability is adopted as substrate,and the relaxor ferroelectric(Sr_(0.7)Bi_(0.2))TiO_(3) is introduced to form solid solution to introduce relaxor behavior.The subsequently fabricated 0.3Bi(Fe_(0.95)Mn_(0.05))O_(3)-0.7(Sr_(0.7)Bi_(0.2))TiO_(3)(BFMO-SBT)thin film capacitor exhibits a high recoverable energy storage density(W_(rec)=61 J cm^(-3))and a high efficiency(η=75%)combined with a fast discharging rate(23.5 μs)due to the large polarization difference(ΔP=59.4 μC cm^(-2)),high breakdown strength(E_(b)=3000 kV cm^(-1)),and the strong relaxor dispersion(γ=1.78).Of particular importance is the capacitor presents excellent stability of energy storage performance,including a wide working temperature window of -50-200℃,fatigue endurance of 108 cycles,and frequency range of 500 Hz-20 kHz.Furthermore,there are no obviously deteriorations on energy storage capability under various bending states and after 104 times of mechanical bending cycles.All these results indicate that BFMO-SBT on mica film capacitor has potential application in the future flexible electronics. 展开更多
关键词 FLEXIBLE BiFeO_(3)film Energy storage performance Wide temperature range Bending-endurance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部