期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Engineering oxygen vacancy on rutile TiO_2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution 被引量:13
1
作者 Fang Xiao1 Wei Zhou2 +5 位作者 Bojing Sun2 Haoze Li2 panzhe qiao2 Liping Ren2 Xiaojun Zhao1 Honggang Fu2 《Science China Materials》 SCIE EI CSCD 2018年第6期822-830,共9页
Oxygen vacancy(VO) plays a vital role in semiconductor photocatalysis. Rutile TiO2 nanomaterials with controllable contents of VO(0–2.18%) are fabricated via an insitu solid-state chemical reduction strategy, wit... Oxygen vacancy(VO) plays a vital role in semiconductor photocatalysis. Rutile TiO2 nanomaterials with controllable contents of VO(0–2.18%) are fabricated via an insitu solid-state chemical reduction strategy, with color from white to black. The bandgap of the resultant rutile TiO2 is reduced from 3.0 to 2.56 e V, indicating the enhanced visible light absorption. The resultant rutile TiO2 with optimal contents of VO(2.07%) exhibits a high solar-driven photocatalytic hydrogen production rate of 734 μmol h-1, which is about four times as high as that of the pristine one(185 μmol h-1). The presence of VOelevates the apparent Fermi level of rutile TiO2 and promotes the efficient electronhole separation obviously, which favor the escape of photogenerated electrons and prolong the life-time(7.6×103 ns) of photogenerated charge carriers, confirmed by scanning Kelvin probe microscopy, surface photovoltage spectroscopy and transient-state fluorescence. VO-mediated efficient photogenerated electron-hole separation strategy may provide new insight for fabricating other high-performance semiconductor oxide photocatalysts. 展开更多
关键词 oxygen vacancy rutile TiO2 surface engineering solar-driven photocatalysis hydrogen evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部