期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A doublet mechanics model for the ultrasound characterization of malignant tissues
1
作者 Francesco Gentile Jason Sakamoto +2 位作者 Raffaella Righetti paolo decuzzi Mauro Ferrari 《Journal of Biomedical Science and Engineering》 2011年第5期362-374,共13页
Non invasive ultrasound-based imaging systems are being more commonly used in clinical bio-microscopy applications for both ex vivo and in vivo analysis of tissue pathological and physiological states. These modalitie... Non invasive ultrasound-based imaging systems are being more commonly used in clinical bio-microscopy applications for both ex vivo and in vivo analysis of tissue pathological and physiological states. These modalities usually employ high-frequency ultrasound systems to overcome spatial resolution limits of conventional clinical diagnostic approaches. Biological tissues are non continuous, non homogeneous and exhibit a multiscale organization from the sub-cellular level (£1 mm) to the organ level (31 cm). When the ultrasonic wavelength used to probe the tissues becomes comparable with the tissue's microstructure scale, the propagation and reflection of ultrasound waves cannot be fully interpreted employing classical models developed within the continuum assumption. In this study, we present a multiscale model for analyzing the mechanical response of a non-continuum double-layer system exposed to an ultrasound source. The model is developed within the framework of the Doublet Mechanics theory and can be applied to the non-invasive analysis of complex biological tissues. 展开更多
关键词 Nanomechanics DOUBLET Mechanics ULTRASOUND Spectroscopy BIOPSY Microscopic ELASTOGRAPHY ULTRASOUND BIOMICROSCOPY
下载PDF
Time dependent dispersion of nanoparticles in blood vessels
2
作者 Francesco Gentile paolo decuzzi 《Journal of Biomedical Science and Engineering》 2010年第5期517-524,共8页
The dispersion of intravasculary injected nanoparticles can be efficiently described by introducing an effective diffusion coefficient Deff which quantifies the longitudinal mass transport in blood vessels. Here, the ... The dispersion of intravasculary injected nanoparticles can be efficiently described by introducing an effective diffusion coefficient Deff which quantifies the longitudinal mass transport in blood vessels. Here, the original work of Gill and Sankarasubramanian was modified and extended to include 1) the variati- on over time of Deff;2) the permeability of the blood vessels and 3) non-Newtonian rheology of blood. A general solution was provided for Deff depending on space (?), time (?), plug radius (?c) and a subset of permeability parameters. It was shown that increasing the vessel plug radius (thus hematocrit) or permeability leads to a reduction in Deff, limiting the transport of nanoparticles across those vessels. It was also shown that the asymptotic time beyond which the solution attains the steady state behaviour is always independent of the plug radius and wall permeability. The analysis presented can more accurately predict the transport of nanoparticles in blood vessels, compared to previously developed models. 展开更多
关键词 NANOPARTICLE Transport Casson Fluid PERMEABLE BLOOD VESSELS DRUG Delivery
下载PDF
Tribological behavior of shape-specific microplate-enriched synovial fluids on a linear two-axis tribometer
3
作者 Agnese FRAGASSI Antonietta GRECO +6 位作者 Martina DI FRANCESCO Luca CESERACCIU Aiman ABU AMMAR Israel DVIR Thomas Lee MOORE Haytam KASEM paolo decuzzi 《Friction》 SCIE EI CAS CSCD 2024年第3期539-553,共15页
Nano-and micro-particles are being increasingly used to tune interfacial frictional properties in diverse applications,from friction modifiers in industrial lubrication to enhanced biological fluids in human osteoarth... Nano-and micro-particles are being increasingly used to tune interfacial frictional properties in diverse applications,from friction modifiers in industrial lubrication to enhanced biological fluids in human osteoarthritic joints.Here,we assessed the tribological properties of a simulated synovial fluid enriched with non-spherical,poly lactic-co-glycolic acid(PLGA)microparticles(μPL)that have been previously demonstrated for the pharmacological management of osteoarthritis(OA).Three different μPL configurations were fabricated presenting a 20μm×20μm square base and a thickness of 5μm(thin,5H μPL),10μm(10H μPL),and 20μm(cubical,20H μPL).After extensive morphological and physicochemical characterizations,the apparent Young’s modulus of the μPL was quantified under compressive loading returning an average value of~6 kPa,independently of the particle morphology.Then,using a linear two-axis tribometer,the static(μ_(s))and dynamic(μ_(d))friction coefficients of the μPL-enriched simulated synovial fluid were determined in terms of particle configuration and concentration,varying from 0(fluid only)to 6×10^(5) μPL/mL.The particle morphology had a modest influence on friction,possibly because the μPL were fully squeezed between two mating surfaces by a 5.8 N normal load realizing boundary-like lubrication conditions.Differently,friction was observed to depend on the dimensionless parameterW,defined as the ratio between the total volume of the μPL enriching the simulated synovial fluid and the volume of the fluid itself.Both coefficients of friction were documented to grow withWreaching a plateau of μ_(s)~0.4 and μ_(d)~0.15,already at Ω~2×10^(-3).Future investigations will have to systematically analyze the effect of sliding velocity,normal load,and rigidity of the mating surfaces to elucidate in full the tribological behavior of μPL in the context of osteoarthritis. 展开更多
关键词 OSTEOARTHRITIS MICROPARTICLES TRIBOLOGY synovial fluid pin on plate
原文传递
Vascular-confined multi-passage discoidal nanoconstructs for the low-dose docetaxel inhibition of triple-negative breast cancer growth 被引量:2
4
作者 Alessia Felici Daniele Di Mascolo +6 位作者 Miguel Ferreira Simone Lauciello Luca Bono Andrea Armirotti Arunkumar Pitchaimani Anna Lisa Palange paolo decuzzi 《Nano Research》 SCIE EI CSCD 2022年第1期482-491,共10页
Taxane efficacy in triple negative breast cancer(TNBC)is limited by insufficient tumor accumulation and severe off-target effects.Nanomedicines offer a unique opportunity to enhance the anti-cancer potency of this dru... Taxane efficacy in triple negative breast cancer(TNBC)is limited by insufficient tumor accumulation and severe off-target effects.Nanomedicines offer a unique opportunity to enhance the anti-cancer potency of this drug.Here,1,000 nm×400 nm discoidal polymeric nanoconstructs(DPN)encapsulating docetaxel(DTXL)and the near infrared compound Iipid-Cy5 were engineered.DPN were obtained by filling multiple times cylindrical wells in a poly(vinyl alcohol)template with a polymer mixture comprising poly(lactic-co-glycolic acid)(PLGA)and poly(ethylene glycol)diacrylate(PEG-DA)chains together with therapeutic and imaging agents.The resulting“multi-passage”DPN exhibited higher DTXL loading,Iipid-Cy5 stability,and stiffness as compared to the conventional"single-passage"approach.Confocal microscopy confirmed that DTXL-DPN were not taken up by MDA-MB-231 cells but would rather sit next to the cell membrane and slowly release DTXL thereof.Empty DPN had no toxicity on TNBC cells,whereas DTXL-DPN presented a cytotoxic potential comparable to free DTXL(IC_(50)=2.6 nM±1.0 nM vs.7.0 nM±1.09 nM at 72 h).In orthotopic murine models,DPN accumulated in TNBC more efficiently than free-DTXL.With only 2 mg/kg DTXL,intravenously administered every 2 days for a total of 13 treatments,DTXL-DPN induced tumor regression and were associated to an overall 80%survival rate as opposed to a 30%survival rate for free-DTXL,at 120 days.All untreated mice succumbed before 90 days.Collectively,this data demonstrates that vascular confined multi-passage DPN,biomimicking the behavior of circulating platelets,can efficiently deliver chemotherapeutic molecules to malignant tissues and effectively treat orthotopic TNBC at minimal taxane doses. 展开更多
关键词 hydrogel particles template strategy vascular targeting biomimicry cancer therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部