期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improving the radiopacity of Fe-Mn biodegradable metals by magnetron-sputtered W-Fe-Mn-C coatings:Application for thinner stents
1
作者 Samira Ravanbakhsh Carlo Paternoster +6 位作者 Gianni Barucca paolo mengucci Sofia Gambaro Theophraste Lescot Pascale Chevallier a Marc-Andre Fortin Diego Mantovani 《Bioactive Materials》 SCIE 2022年第6期64-70,共7页
In this exploratory work,micrometric radiopaque W-Fe-Mn-C coatings were produced by magnetron sputtering plasma deposition,for the first time,with the aim to make very thin Fe-Mn stents trackable by fluoroscopy.The po... In this exploratory work,micrometric radiopaque W-Fe-Mn-C coatings were produced by magnetron sputtering plasma deposition,for the first time,with the aim to make very thin Fe-Mn stents trackable by fluoroscopy.The power of Fe-13Mn-1.2C target was kept constant at 400 W while that of W target varied from 100 to 400 W producing three different coatings referred to as P100,P200,P400.The effect of the increased W power on coatings thickness,roughness,structure,corrosion behavior and radiopacity was investigated.The coatings showed a power-dependent thickness and W concentration,different roughness values while a similar and uniform columnar structure.An amorphous phase was detected for both P100 and P200 coatings while γ-Fe,bcc-W and W_(3)C phases found for P400.Moreover,P200 and P400 showed a significantly higher corrosion rate(CR)compared to P100.The presence of W,W_(3)C as well as the Fe amount variation determined two different micro-galvanic corrosion mechanisms significantly changing the CR of coatings,0.26±0.02,59.68±1.21 and 59.06±1.16μm/year for P100,P200 and P400,respectively.Sample P200 with its most uniform morphology,lowest roughness(RMS=3.9±0.4 nm)and good radiopacity(~6%)appeared the most suitable radiopaque biodegradable coating investigated in this study. 展开更多
关键词 Fe-Mn-Based alloys Degradable coatings W-Fe-Mn-C coatings Magnetron sputtering RADIOPACITY Stent fluoroscopy
原文传递
Surface processing for iron-based degradable alloys:A preliminary study on the importance of acid pickling
2
作者 Leticia Marin de Andrade Carlo Paternoster +3 位作者 Pascale Chevallier Sofia Gambaro paolo mengucci Diego Mantovani 《Bioactive Materials》 SCIE 2022年第5期166-180,共15页
The formation of a heterogeneous oxidized layer,also called scale,on metallic surfaces is widely recognized as a rapid manufacturing event for metals and their alloys.Partial or total removal of the scale represents a... The formation of a heterogeneous oxidized layer,also called scale,on metallic surfaces is widely recognized as a rapid manufacturing event for metals and their alloys.Partial or total removal of the scale represents a mandatory integrated step for the industrial fabrication processes of medical devices.For biodegradable metals,acid pickling has already been reported as a preliminary surface preparation given further processes,such as electropolishing.Unfortunately,biodegradable medical prototypes presented discrepancies concerning acid pickling studies based on samples with less complex geometry(e.g.,non-uniform scale removal and rougher surface).Indeed,this translational knowledge lacks a detailed investigation on this process,deep characterization of treated surfaces properties,as well as a comprehensive discussion of the involved mechanisms.In this study,the effects of different acidic media(HCl,HNO_(3),H_(3)PO_(4),CH_(3)COOH,H_(2)SO_(4) and HF),maintained at different temperatures(21 and 60℃)for various exposition time(15-240 s),on the chemical composition and surface properties of a Fe-13Mn-1.2C biodegradable alloy were investigated.Changes in mass loss,morphology and wettability evidenced the combined effect of temperature and time for all conditions.Pickling in HCl and HF solutions favor mass loss(0.03-0.1 g/cm^(2))and effectively remove the initial scale. 展开更多
关键词 Biodegradable metals Iron-based alloys Acid pickling Surface finishing Pre-treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部