Controlling photographic illumination in a structured fashion is a common practice in computational photography and image-based rendering. Here we introduce an incoherent photographic imaging approach, termed Fourier ...Controlling photographic illumination in a structured fashion is a common practice in computational photography and image-based rendering. Here we introduce an incoherent photographic imaging approach, termed Fourier ptychographic photography, that uses nonuniform structured light for super-resolution imaging. In this approach,frequency mixing between the object and the structured light shifts the high-frequency object information to the passband of the photographic lens. Therefore, the recorded intensity images contain object information that is beyond the cutoff frequency of the collection optics. Based on multiple images acquired under different structured light patterns, we used the Fourier ptychographic algorithm to recover the super-resolution object image and the unknown illumination pattern. We demonstrated the reported approach by imaging various objects, including a resolution target, a quick response code, a dollar bill, an insect, and a color leaf. The reported approach may find applications in photographic imaging settings, remote sensing, and imaging radar. It may also provide new insights for high-resolution imaging by shifting the focus from the collection optics to the generation of structured light.展开更多
文摘Controlling photographic illumination in a structured fashion is a common practice in computational photography and image-based rendering. Here we introduce an incoherent photographic imaging approach, termed Fourier ptychographic photography, that uses nonuniform structured light for super-resolution imaging. In this approach,frequency mixing between the object and the structured light shifts the high-frequency object information to the passband of the photographic lens. Therefore, the recorded intensity images contain object information that is beyond the cutoff frequency of the collection optics. Based on multiple images acquired under different structured light patterns, we used the Fourier ptychographic algorithm to recover the super-resolution object image and the unknown illumination pattern. We demonstrated the reported approach by imaging various objects, including a resolution target, a quick response code, a dollar bill, an insect, and a color leaf. The reported approach may find applications in photographic imaging settings, remote sensing, and imaging radar. It may also provide new insights for high-resolution imaging by shifting the focus from the collection optics to the generation of structured light.