Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
Two-photon polymerisation lithography enables the three-dimensional(3D)-printing of high-resolution micron-and nano-scale structures.Structures that are 3D-printed using proprietary resins are transparent and are suit...Two-photon polymerisation lithography enables the three-dimensional(3D)-printing of high-resolution micron-and nano-scale structures.Structures that are 3D-printed using proprietary resins are transparent and are suitable as optical components.However,achieving a mix of opaque and transparent structures in a single optical component is challenging and requires multiple material systems or the manual introduction of ink after fabrication.In this study,we investigated an overexposure printing process for laser decomposition,which typically produces uncontrollable and random‘burnt’structures.Specifically,we present a printing strategy to control this decomposition process,realising the on-demand printing of opaque or transparent structures in a single lithographic step using a single resin.Using this method,opaque structures can be printed with a minimum feature size of approximately 10μm,which exhibit<15%transmittance at a thickness of approximately 30μm.We applied this process to print an opaque aperture integrated with a transparent lens to demonstrate an improved imaging contrast.展开更多
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
基金funded by the Singapore University of Technology and Design(SUTD)through the SUTD Ph.D.Fellowship.
文摘Two-photon polymerisation lithography enables the three-dimensional(3D)-printing of high-resolution micron-and nano-scale structures.Structures that are 3D-printed using proprietary resins are transparent and are suitable as optical components.However,achieving a mix of opaque and transparent structures in a single optical component is challenging and requires multiple material systems or the manual introduction of ink after fabrication.In this study,we investigated an overexposure printing process for laser decomposition,which typically produces uncontrollable and random‘burnt’structures.Specifically,we present a printing strategy to control this decomposition process,realising the on-demand printing of opaque or transparent structures in a single lithographic step using a single resin.Using this method,opaque structures can be printed with a minimum feature size of approximately 10μm,which exhibit<15%transmittance at a thickness of approximately 30μm.We applied this process to print an opaque aperture integrated with a transparent lens to demonstrate an improved imaging contrast.